首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of the title thionocarbonates (6, 7, and 8, respectively) with a series of secondary alicyclic amines are subjected to a kinetic investigation in 44 wt % ethanol-water, 25.0 degrees C, ionic strength 0.2 M (KCl). Under excess amine, pseudo-first-order rate coefficients (k(obsd)) are obtained for all reactions. Reactions of substrates 6 and 7 with piperidine and of thionocarbonate 8 with the same amine and piperazine, 1-(2-hydroxyethyl)piperazine, and morpholine show linear k(obsd) vs [amine] plots, with slopes (k(1)) independent of pH. On the other hand, these plots are nonlinear upward for the reactions of substrates 6 and 7 with all the amines, except piperidine, and also for the reactions of compound 8 with 1-formylpiperazine and piperazinium ion. For all these reactions a mechanistic scheme is proposed with the formation of a zwitterionic tetrahedral intermediate (T(+/-)), which can transfer a proton to an amine to give an anionic intermediate (T(-)). Rate and equilibrium microcoefficients of this scheme, k(1), k(-)(1), K(1) (= k(1)/k(-)(1)), and k(2), are obtained by fitting the nonlinear plots through an equation derived from the scheme. The Br?nsted-type plots for k(1) are linear with slopes beta(1) = 0.19, 0.21, and 0.26 for the aminolysis of 6, 7, and 8, respectively. This is consistent with the hypothesis that the formation of T(+/-) (k(1) step) is the rate-determining step. The k(1) values for these reactions follow the sequence 8 > 7 > 6, consistent with the sequence of the electron-withdrawing effects from the substituents on the "nonleaving" group of the substrates. The k(1) values for the aminolysis of 6, 7, and 8 are smaller than those for the same aminolysis of 3-methoxyphenyl, 3-chlorophenyl, and 4-cyanophenyl 4-nitrophenyl thionocarbonates (2, 3, and 4, respectively). The k(2) values (expulsion of the nucleofuge from T(+/-)) increase as the electron withdrawal from the nonleaving group increases. These values are smaller for the aminolysis of 6, 7, and 8 compared to those for the same aminolysis of 2, 3, and 4, respectively.  相似文献   

2.
The reactions of 3-methoxyphenyl, 3-chlorophenyl, and 4-cyanophenyl 4-nitrophenyl thionocarbonates (1, 2, and 3, respectively) with a series of secondary alicyclic amines are studied kinetically in 44 wt % ethanol-water at 25.0 degrees C and an ionic strength of 0.2 M (KCl). Pseudo-first-order rate coefficients (k(obsd)) are obtained for all reactions (amine excess was used). The reactions of compound 1 with piperidine, piperazine, and 1-(2-hydroxyethyl)piperazine and of compounds 2 and 3 with these amines and morpholine exhibit linear k(obsd) versus amine concentration plots with slopes (k1) independent of pH. In contrast, the plots are nonlinear upward for the reactions of substrate 1 with morpholine, 1-formylpiperazine, and piperazinium ion and of substrates 2 and 3 with the two latter amines. For all these reactions, a reaction scheme is proposed with a zwitterionic tetrahedral intermediate (T+/-), which can be deprotonated by an amine to yield an anionic intermediate (T-). When the nonlinear plots are fit through an equation derived from the scheme, rate and equilibrium microcoefficients are obtained. The Br?nsted-type plots for k1 are linear with slopes of beta1 = 0.22, 0.20, and 0.24 for the aminolysis of 1, 2, and 3, respectively, indicating that the formation of T+/- (k1 step) is rate-determining. The k1 values for these reactions follow the sequence 3 > 2 > 1, which can be explained by the sequence of the electron-withdrawing effects from the substituents on the nonleaving group of the substrates.  相似文献   

3.
Reactions of 4-methylphenyl 4-nitrophenyl carbonate (MPNPC) and 4-chlorophenyl 4-nitrophenyl carbonate (ClPNPC) with a series of quinuclidines (QUIN) and the latter carbonate with a series of secondary alicyclic amines (SAA) are subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M. The reactions were followed spectrophotometrically at 330 or 400 nm (4-nitrophenol or 4-nitrophenoxide anion appearance, respectively). Under excess amine, pseudo-first-order rate coefficients (k(obsd)) are found. For all these reactions, plots of k(obsd) vs free amine concentration at constant pH are linear, the slope (k(N)) being independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acids of the amines) for the reactions of the series of QUIN with MPNPC and ClPNPC are linear with slopes (beta(N)) 0.88 and 0.87, respectively, which are explained by a stepwise process where breakdown of a zwitterionic tetrahedral intermediate (T(+/-)) to products is rate limiting. The Br?nsted-type plot for the reactions of the series of SAA with ClPNPC is biphasic with slopes beta(1) = 0.2 (high pK(a) region) and beta(2) = 0.9 (low pK(a) region) and a curvature center at pK(a)(0) = 10.6. This plot is in accordance with a stepwise mechanism through T(+/-) and a change in the rate-determining step, from T(+/-) breakdown to T(+/-) formation as the basicity of the SAA increases. Two conclusions arise from these results: (i) QUIN are better leaving groups from T(+/-) than isobasic SAA, and (ii) the non-leaving group effect on k(N) for these reactions is small, since beta(nlg) ranges from -0.2 to - 0.3. From these values, it is deduced that ClPNPC is ca. 70% more reactive than MPNPC toward SAA and QUIN, when expulsion of the leaving group from T(+/-) is the rate determining step.  相似文献   

4.
The reactions of methyl 4-nitrophenyl carbonate (MNPC) with a series of secondary alicyclic amines (SAA) and quinuclidines (QUIN), methyl 2,4-dinitrophenyl carbonate (MDNPC) with QUIN and 1-(2-hydroxyethyl)piperazinium ion (HPA), and phenyl 2,4-dinitrophenyl carbonate (PDNPC) with SAA are subjected to a kinetic investigation in aqueous solution, at 25.0 degrees C and an ionic strength of 0.2 M. By following spectrophotometrically the nucleofuge release (330-400 nm) under amine excess, pseudo-first-order rate coefficients (k(obsd)) are obtained. Plots of k(obsd) vs [amine] at constant pH are linear, with the slope (k(N)) being pH independent. The Br?nsted-type plot (log k(N) vs amine pK(a)) for the reactions of SAA with MNPC is biphasic with slopes beta(1) = 0.3 (high pK(a) region) and beta(2) = 1.0 (low pK(a) region) and a curvature center at pK(a)(0) = 9.3. This plot is consistent with a stepwise mechanism through a zwitterionic tetrahedral intermediate (T(+/-)) and a change in the rate-determining step with SAA basicity. The Br?nsted plot for the quinuclidinolysis of MNPC is linear with slope beta(N) = 0.86, in line with a stepwise process where breakdown of T(+/-) to products is rate limiting. A previous work on the reactions of SAA with MDNPC was revised by including the reaction of HPA. The Br?nsted plots for the reactions of QUIN and SAA with MDNPC and SAA with PDNPC are linear with slopes beta = 0.51, 0.48, and 0.39, respectively, consistent with concerted mechanisms. Since quinuclidines are better leaving groups from T(+/-) than isobasic SAA, yielding a less stable T(+/-), it seems doubtful that the quinuclidinolysis of PDNPC is stepwise, as reported.  相似文献   

5.
The reactions of S-4-nitrophenyl 4-X-substituted thiobenzoates (X = H, Cl, and NO(2): 1, 2, and 3, respectively) with a series of secondary alicyclic amines (SAA) were subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). The reactions were followed spectrophotometrically by monitoring the release of 4-nitrobenzenethiolate anion at 420-425 nm. Under excess amine, pseudo-first-order rate constants (k(obsd)) are obtained for all reactions. The plots of k(obsd) vs [SAA] at constant pH are linear with the slope (k(N)) independent of pH. The statistically corrected Br?nsted-type plots (log k(N)/q vs pK(a) + log p/q) for the reactions of 1 and 2 are nonlinear with slopes at high pK(a), beta(1) = 0.27 and 0.10, respectively, and slopes at low pK(a), beta(2) = 0.86 and 0.84, respectively. The Br?nsted curvature is centered at pK(a) (pK(a)(0)) 10.0 and 10.4, respectively. The reactions of SAA with 3 exhibit a linear Br?nsted-type plot of slope 0.81. These results are consistent with a stepwise mechanism, through a zwitterionic tetrahedral intermediate (T(+/-)). For the reactions of 1 and 2, there is a change in rate-determining step with amine basicity, from T(+/-) breakdown to products at low pK(a), to T(+/-) formation at high pK(a). For the reactions of 3, breakdown to products of T(+/-) is rate limiting for all the SAA series (pK(a)(0) > 11). The increasing pK(a)(0) value as the substituent in the acyl group becomes more electron withdrawing is attributed to an increasing nucleofugality of SAA from T(+/-). The greater pK(a)(0) value for the reactions of SAA with 1, relative to that found in the pyridinolysis of 2,4-dinitrophenyl benzoate (pK(a)(0) = 9.5), is explained by the greater nucleofugality from T(+/-) of the former amines, compared to isobasic pyridines, and the greater leaving ability from T(+/-) of 2,4-dinitrophenoxide relative to 4-nitrobenzenethiolate.  相似文献   

6.
A kinetic study is reported for the reactions of 4-nitrophenyl phenyl carbonate (5) and thionocarbonate (6) with a series of alicyclic secondary amines in 80 mol% H(2)O-20 mol% DMSO at 25.0 +/- 0.1 degrees C. The plots of k(obsd) vs. amine concentration are linear for the reactions of 5. On the contrary, the plots for the corresponding reactions of 6 curve upward as a function of increasing amine concentration, indicating that the reactions proceed through two intermediates (i.e., a zwitterionic tetrahedral intermediate T(+/-) and its deprotonated form T(-)). The Br?nsted-type plot for 5 the reactions of with secondary amines exhibits a downward curvature, i.e., the slope decreases from 0.98 to 0.26 as the pK(a) of the conjugate acid of amines increases, implying that the reactions proceed through T(+/-) with a change in the rate-determining step (RDS). The k(N) values are larger for the reactions of with secondary amines than for those with primary amines of similar basicity. Dissection of k(N) values for the reactions of 5 into the microscopic rate constants (i.e., k(1) and k(2)/k(-1) ratio) has revealed that k(1) is larger for the reactions with secondary amines than for those with isobasic primary amines, while the k(2)/k(-1) ratio is nearly identical. On the other hand, for reactions of 6, secondary amines exhibit larger k(1) values but smaller k(2)/k(-1) ratios than primary amines. The current study has shown that the reactivity and reaction mechanism are strongly influenced by the nature of amines (primary vs. secondary amines) and electrophilic centers (C[double bond]O vs. C[double bond]S).  相似文献   

7.
[reaction: see text] The reactions of S-2,4-dinitrophenyl 4-methyl (1), S-2,4-dinitrophenyl 4-H (2), S-2,4-dinitrophenyl 4-chloro (3), and S-2,4-dinitrophenyl 4-nitro (4) thiobenzoates with a structurally homogeneous series of pyridines are subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). The reactions are studied spectrophotometrically (420 nm) by monitoring the appearance of 2,4-dinitrobenzenethiolate anion. Pseudo-first-order rate coefficients (k(obsd)) are obtained for all the reactions, employing excess of amine. The plots of k(obsd) vs [free pyridine] at constant pH are linear with the slopes (k(N)) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acid of the pyridines) are curved for all the reactions. The Br?nsted curves are in accordance with stepwise mechanisms, through a zwitterionic tetrahedral intermediate (T(+/-)), and a change in the rate-limiting step. An equation based on this hypothesis accounts well for the experimental points. The Br?nsted lines were calculated with the following parameters: Reactions of thiolbenzoate 1: beta(1) 0.33 (slope at high pK(a)), beta(2) 0.95 (slope at low pK(a)), and pK(a)(0) = 8.5 (pK(a) at the curvature center); thiolbenzoate 2: beta(1) 0.30, beta(2) 0.88, and pK(a)(0) = 8.9; thiolbenzoate 3: beta(1) 0.33, beta(2) 0.89, and pK(a)(0) = 9.5; thiolbenzoate 4: beta(1) 0.21, beta(2) 0.97, and pK(a)(0) = 9.9. The increase of the pK(a)(0) value with the increase of the electron-withdrawing effect of the acyl substituent is explained by the argument that the rate of pyridine expulsion from T(+/-) (k(-)(1)) is favored over that of 2,4-dinitrobenzenethiolate leaving (k(2)), i.e., k(-)(1)/k(2) increases, as the acyl group becomes more electron withdrawing. The pK(a)(0) values for the title reactions are smaller than those for the reactions of the corresponding 4-nitrophenyl 4-substituted thiolbenzoates with the same pyridine series. This is explained by the larger k(2) value for 2,4-dinitrobenzenethiolate leaving from T(+/-) compared with 4-nitrobenzenethiolate, which results in lower k(-)(1)/k(2) ratios for the dinitro derivatives. The pK(a)(0) value obtained for the pyridinolysis of thiolbenzoate 2 (pK(a)(0) = 8.9) is smaller than that found for the same aminolysis of 2,4-dinitrophenyl benzoate (pK(a)(0) = 9.5). This is attributed to the greater nucleofugality from T(+/-) of 2,4-dinitrobenzenethiolate (pK(a) of conjugate acid 3.4) relative to 2,4-dinitrophenoxide (pK(a) of conjugate acid 4.1). The title reactions are also compared with the aminolysis of similar esters to assess the effect of the amine nature and leaving and acyl groups on the kinetics and mechanism.  相似文献   

8.
The reactions of secondary alicyclic amines with 2,4,6-trinitrophenyl methyl carbonate (TNPMC) and 2,4,6-trinitrophenyl acetate (TNPA) are subjected to a kinetic study in aqueous solution, 25.0 degrees C, ionic strength 0.2 (KCl). The reactions are studied by following spectrophotometrically (360 nm) the release of the 2,4,6-trinitrophenoxide anion. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs [amine] are linear, with the slope (kN) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acid of the amines) are linear, with slopes beta = 0.41 and beta = 0.36 for the reactions of TNPA and TNPMC, respectively. The predicted breaks of the Br?nsted plots for stepwise mechanisms are pK(a)0 = 6.8 and 7.3, respectively. The lack of Br?nsted breaks for these reactions and the values of the Br?nsted slopes are consistent with concerted mechanisms. By comparison of the reactions under investigation among them and with similar aminolysis and pyridinolysis, the following conclusions can be drawn: (i) Secondary alicyclic amines react with TNPA and TNPMC by concerted mechanisms. (ii) TNPA is more reactive toward these amines than TNPMC due to the greater electron release of MeO from the latter substrate. (iii) The change of 2,4-dinitrophenoxy to 2,4,6-trinitrophenoxy in the zwitterionic tetrahedral intermediate (T+/-) formed in the reactions of the title amines with 2,4-dinitrophenyl acetate greatly destabilizes T+/-. (iv) Secondary alicyclic amines destabilize T+/- relative to pyridines. (v) The intermediate T+/- formed in the reactions of the title amines with S-(2,4,6-trinitrophenyl) acetate is greatly destabilized by substitution of S-(2,4,6-trinitrophenyl) by O-(2,4,6-trinitrophenyl) as the leaving group.  相似文献   

9.
A kinetic study is reported for aminolysis of 4-pyridyl X-substituted-benzoates 5a-i. Plots of pseudo-first-order rate constants (k(obsd)) vs [amine] curve upward for the reactions of substrates possessing a strong electron-withdrawing group in the benzoyl moiety (5a-d) but are linear for the reactions of those bearing an electron-donating group (5e-i), indicating that the electronic nature of substituent X governs the reaction mechanism. The k(1)k(2)/k(-1) and k(1)k(3)/k(-1) values were calculated from the intercept and slope of the linear plots of k(obsd)/[amine] vs [amine], respectively. The Hammett plot for k(1)k(2)/k(-1) consists of two intersecting straight lines, while the Yukawa-Tsuno plot exhibits an excellent linear correlation with ρ(X) = 0.41 and r = 1.58, implying that the nonlinear Hammett plot is not due to a change in rate-determining step but is caused by stabilization of substrates possessing an electron-donating group through resonance interactions. The small ρ(X) suggests that the k(2)/k(-1) ratio is little influenced by the nature of substituent X. The Br?nsted-type plots for aminolysis of 4-pyridyl 3,5-dinitrobenzoate 5a are linear with β(nuc) = 0.98 and 0.79 for k(1)k(2)/k(-1) and k(1)k(3)/k(-1), respectively. The effect of amine basicity on the microscopic rate constants is also discussed.  相似文献   

10.
The reactions of anilines with 4-methylphenyl and 4-chlorophenyl 2,4-dinitrophenyl carbonates (MPDNPC and ClPDNPC, respectively) and the latter substrate with secondary alicyclic (SA) amines are subjected to a kinetic study in 44 wt % ethanol-water solution, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). The reactions are studied by following spectrophotometrically (360 nm) the release of 2,4-dinitrophenoxide anion. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs [amine] are linear and pH-independent, with slope k(N). The Br?nsted-type plots (log k(N) vs pK(a) of aminium ions) are linear, with slopes beta = 0.68 and 0.66 for the reactions of anilines with MPDNPC and ClPDNPC, respectively, and beta = 0.44 for the reactions of SA amines with ClPDNPC. The magnitude of the slope for the latter reaction indicates that its mechanism is concerted. The slope values for the reactions of anilines are in the borderline between stepwise and concerted mechanisms. The sensitivity of logk(N) to the basicity of the nonleaving group (beta(nlg)) is ca. -0.7 for the reactions of anilines, in agreement with that found for the SA reactions (beta(nlg) ca. -0.6). These results suggest that the reactions of anilines are concerted, although it is also possible that both mechanisms (stepwise and concerted) operate simultaneously. By comparison of the reactions under investigation between them and with similar aminolyses, the following conclusions can be drawn: (i) ClPDNPC is more reactive than MPDNPC toward the two amine series. (ii) The change of water to aqueous ethanol destabilizes a zwitterionic tetrahedral intermediate. (iii) The change of the nonleaving group from MeO to 4-methylphenoxy or 4-chlorophenoxy also destabilizes this intermediate.  相似文献   

11.
The title reactions are subjected to a kinetic study in water, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). By following the reactions spectrophotometrically two consecutive reactions are observed: the first is formation of the corresponding thionocarbamates (1-(aryloxythiocarbonyl)pyridinium cations) and the second is their decomposition to the corresponding phenol and pyridine, and COS. Pseudo-first-order rate coefficients (k(obsd1) and k(obsd2), respectively) are found under excess amine. Plots of k(obsd1) vs free pyridine concentration at constant pH are linear, with the slope (k(N)) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acids of the pyridines) are linear with slopes beta = 0.07 and 0.11 for the reactions of phenyl and 4-nitrophenyl chlorothionoformates, respectively. These Br?nsted slopes are in agreement with those found in other stepwise reactions of the same pyridines in water, where the formation of a tetrahedral intermediate is the rate-determining step. In contrast to the stepwise mechanism of the title reactions that for the reactions of the same substrates with phenols is concerted, which means that substitution of a pyridino moiety in a tetrahedral intermediate by a phenoxy group destabilizes the intermediate. The second reaction corresponds to the pyridine-catalyzed hydrolysis of the corresponding 1-(aryloxythiocarbonyl)pyridinium cation. Plots of k(obsd2) vs free pyridine concentration at constant pH are linear, with the slope (k(H)) independent of pH. The Br?nsted plots for k(H) are linear with slopes beta = 0.19 and 0.26 for the reactions of the phenyl and 4-nitrophenyl derivatives, respectively. These low values are explained by the fact that as pK(a) increases the effect of a better pyridine catalyst is compensated by a worse leaving pyridine from the corresponding thionocarbamate  相似文献   

12.
[reaction: see text] The reactions of secondary alicyclic (SA) amines and quinuclidines (QUI) with 4-nitrophenyl and 2,4-dinitrophenyl S-methyl thiocarbonates (1 and 2, respectively) and those of SA amines with 2,3,4,5,6-pentafluorophenyl S-methyl thiocarbonate (3) are subjected to a kinetic study in aqueous solution, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). The reactions of thiocarbonates 1, 2, and 3 were followed spectrophotometrically at 400, 360, and 220 nm, respectively. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs amine concentration at constant pH are linear, with the slope (kN) independent of pH. The Br?nsted-type plots (log kN vs pKa of aminium ions) are linear for all the reactions, with slopes beta = 0.9 for those of 1 with SA amines and QUI, beta = 0.36 and 0.57 for the reactions of 2 with SA amines and QUI, respectively, and beta = 0.39 for the reactions of SA amines with 3. The magnitude of the slopes indicates that both aminolyses of 1 are governed by stepwise mechanisms, through a zwitterionic tetrahedral intermediate (T+/-), where expulsion of the nucleofuge from T+/- is the rate-determining step. The values of the Br?nsted slopes found for the aminolyses of thiocarbonates 2 and 3 suggest that these reactions are concerted. By comparison of the reactions under investigation between them and with similar aminolyses, the following conclusions arise: (i) Thiocarbonate 2 is more reactive than 1 toward the two amine series. (ii) The change of the nonleaving group from MeO in 4-nitrophenyl methyl carbonate to MeS in thiocarbonate 1 results in lower kN values. (iii) The greater reactivity of this carbonate than thiocarbonate 1 is attributed to steric hindrance of the MeS group, compared to MeO toward amine attack. (iv) The change of a pyridine to an isobasic SA amine or QUI destabilizes the T+/- intermediate formed in the aminolyses of 2. (v) The change of 4-nitrophenoxy to 2,3,4,5,6-pentafluorphenoxy or 2,4-dinitrophenoxy as the leaving group destabilizes the tetrahedral intermediate formed in the reactions with SA amines, changing the mechanism from a stepwise process to a concerted reaction.  相似文献   

13.
The kinetics of the reactions of the nitrogen-sulfur(VI) esters 4-nitrophenyl N-methylsulfamate (NPMS) with a series of pyridines and a series of alicyclic amines and of 4-nitrophenyl N-benzylsulfamate (NPBS) with pyridines, alicyclic amines, and a series of quinuclidines have been investigated in acetonitrile (ACN) in the presence of excess amine at various temperatures. Pseudo-first-order rate constants (k(obsd)) have been obtained by monitoring the release of 4-nitrophenol/4-nitrophenoxide. From the slope of a plot of k(obsd) vs [amine], second-order rate constants (k'(2)) have been obtained for the pyridinolysis of NPMS, and a Br?nsted plot of log k'(2) vs pK(a) of pyridine gave a straight line with beta = 0.45. However, aminolysis with alicyclic amines of NPMS gave a biphasic Br?nsted plot (beta(1) = 0.6, beta(2) approximately equal to 0). Pyridinolysis and aminolysis with alicyclic amines and quinuclidines of NPBS also gave similar biphasic Br?nsted plots. This biphasic behavior has been explained in terms of a mechanistic change within the E1cB mechanism from an (E1cB)(irrev) (less basic amines) to an (E1cB)(rev) (more basic amines), and the change occurs at approximately the pK(a)'s (in ACN) of NPMS (17.94) and NPBS (17.68). The straight line Br?nsted plot for NPMS with pyridines occurs because the later bases are not strong enough to substantially remove the substrate proton and initiate the mechanistic change observed in the reaction of NPMS with the strong alicyclic amines and quinuclidines. An entropy study supports the change from a bimolecular to a unimolecular mechanism. This is the first clear demonstration of this E1cB mechanistic changeover involving a nitrogen acid substrate.  相似文献   

14.
The pyridinolysis of S-4-nitrophenyl 4-X-substituted thiobenzoates (X = H, Cl, and NO2; 1, 2, and 3, respectively) is studied kinetically in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). The reactions are measured spectrophotometrically (420-425 nm) by following the appearance of 4-nitrobenzenethiolate anion. Pseudo-first-order rate coefficients (kobsd) are obtained throughout, under excess of amine over the substrate. Plots of kobsd vs [free amine] at constant pH are linear with the slope (kN) independent of pH. The Brnsted-type plot (log kN vs pKa0 of the conjugate acids of the pyridines) for the reactions of thiolbenzoate 1 is curved with a slope at high pKa, beta1 = 0.20, and slope at low pKa0, beta2 = 0.94. The pKa value for the center of the Brnsted curvature is pKa0 = 9.7. The pyridinolysis of thiolbenzoates 2 and 3 show linear Brnsted-type plots of slopes 0.94 and 1.0, respectively. These results and other evidence indicate that these reactions occur with the formation of a zwitterionic tetrahedral intermediate (T+/-). For the pyridinolysis of thiolbenzoate 1, breakdown of T+/- to products (k2 step) is rate-limiting for weakly basic pyridines and T+/- formation (k1 step) is rate-determining for very basic pyridines. The k2 step is rate-limiting for the reactions of thiolbenzoates 2 and 3. The smallest pKa0 value for the reaction of 1 is due to the weakest electron withdrawal of H (relative to Cl and NO2) in the acyl group, which results in the smallest k-1/k2 ratio. The pKa0 values for the title reactions are smaller than those for the reactions of secondary alicyclic amines with thiolbenzoates 1-3. This is attributed to a lower leaving ability from the T+/- of pyridines than isobasic alicyclic amines. The lower p value found for the pyridinolysis of 2,4-dinitrophenyl benzoate (pKa0 = 9.5), compared with that for the pyridinolysis of 1, is explained by the greater nucleofugality from T+/- of 2,4-dinitrophenoxide than 4-nitrobenzenethiolate, which renders the k-1/k2 ratio smaller for the reactions of the benzoate relative to thiolbenzoate 1. The title reactions are also compared with the aminolysis of similar thiolbenzoates in other solvents to assess the solvent effect.  相似文献   

15.
Pseudo-first-order rate constants (k(obs)) have been measured spectrophotometrically for reactions of O-4-nitrophenyl thionobenzoate (2) with a series of primary and acyclic secondary amines. The plots of k(obs) vs amine concentration are linear for the reaction of 2 with primary amines. The slope of the Br?nsted-type plot for the reaction of 2 with primary amines decreases from 0.77 to 0.17 as the amine basicity increases, indicating that the reaction proceeds through a zwitterionic addition intermediate in which the rate-determining step changes from the breakdown of the intermediate to the reaction products to the formation of the intermediate as the amine basicity increases. On the other hand, for reactions with all the acyclic secondary amines studied, the plot of k(obs) vs amine concentration exhibits an upward curvature, suggesting that the reaction proceeds through two intermediates, e.g., a zwitterionic addition intermediate and an anionic intermediate. The microscopic rate constants (k(1), k(-)(1), k(2), and k(3) where available) have been determined for the reactions of 2 with all the primary and secondary amines studied. The k(1) value is larger for the reaction with the primary amine than for the reaction with the isobasic acyclic secondary amines, while the k(-)(1) value is much larger for the latter reaction than for the former reaction. The k(3) value for the reaction with secondary amine is independent of the amine basicity. The small k(2)/k(-)(1) ratio is proposed to be responsible for the deprotonation process observed in aminolyses of carbonyl or thiocarbonyl derivatives.  相似文献   

16.
Pseudo-first-order rate constants (kobs) have been measured spectrophotometrically for reactions of O-4-nitrophenyl thionobenzoate (1) with a series of alicyclic secondary amines in MeCN and H2O at 25.0 +/- 0.1 degrees C. The plot of kobs vs amine concentration exhibits an upward curvature in all cases, indicating that the reactions proceed through two tetrahedral intermediates (a zwitterionic T(+/-) and its deprotonated anionic T-) regardless of the amine basicity and the nature of the reaction medium. However, all the amines investigated have been found to be much less reactive in MeCN than in H2O, although the amines are more basic in the former medium by 7-9 pKa units.  相似文献   

17.
The reactions of a homogeneous series of phenols with bis(4-nitrophenyl) carbonate (BNPC), bis(4-nitrophenyl) thionocarbonate (BNPTOC), and methyl 4-nitrophenyl thionocarbonate (MNPTOC) are subjected to a kinetic investigation in water, at 25.0 degrees C and ionic strength of 0.2 M (KCl). Under excess of phenol over the substrate, all the reactions obey pseudo-first-order kinetics and are first order in phenoxide anion. The reactions of BNPC show a linear Br?nsted-type plot with slope beta = 0.66, consistent with a concerted mechanism (one step). In contrast, those of BNPTOC and MNPTOC show biphasic Br?nsted-type plots with slopes beta = 0.30 and 0.44, respectively, at high pK(a), and beta = 1.25 and 1.60, respectively, at low pK(a), consistent with stepwise mechanisms. For the reactions of both thionocarbonates, the pK(a) value at the center of the Br?nsted plot (pK(a)(0)) is 7.1, which corresponds to the pK(a) of 4-nitrophenol. This confirms that the phenolyses of the thionocarbonates are stepwise processes, with the formation of an anionic tetrahedral intermediate. By the comparison of the kinetics and mechanisms of the title reactions with similar reactions, the following conclusions can be drawn: (i) Substitution of S(-) by O(-) in an anionic tetrahedral intermediate (T(-)) destabilizes it. (ii) The change of MeO by 4-nitrophenoxy in T(-) results in an increase of both the rate constant and equilibrium constant, for the formation of T(-), and also in an enlargement of the rate coefficient for the expulsion of 4-nitrophenoxide from T(-). (iii) Substitution of an amino group in a tetrahedral intermediate by ArO destabilizes it. (iv) Secondary alicyclic amines and other amines show greater reactivity toward MNPTOC than isobasic phenoxide anions.  相似文献   

18.
The reactions of a series of secondary alicyclic (SA) amines with O-phenyl and O-ethyl O-(2,4-dinitrophenyl) thiocarbonates (1 and 2, respectively) and of a series of pyridines with the former substrate are subjected to a kinetic investigation in water, at 25.0 degrees C, ionic strength 0.2 M (KCl). Under amine excess over the substrate, all the reactions obey pseudo-first-order kinetics and are first-order in amine. The Br?nsted-type plots are biphasic, with slopes (at high pK(a)) of beta(1) = 0.20 for the reactions of SA amines with 1 and 2 and beta(1) = 0.10 for the pyridinolysis of 1 and with slopes (at low pK(a)) of beta(2) = 0.80 for the reactions of SA amines with 1 and 2 and beta(2) = 1.0 for the pyridinolysis of 1. The pK(a) values at the curvature center (pK(a)(0)) are 7.7, 7.0, and 7.0, respectively. These results are consistent with the existence of a zwitterionic tetrahedral intermediate (T++) and a change in the rate-determining step with the variation of amine basicity. The larger pK(a)(0) value for the pyridinolysis of 1 compared to that for 2 (pK(a)(0) = 6.8) and the larger pK(a)(0) value for the reactions of SA amines with 1 relative to 2 are explained by the greater inductive electron withdrawal of PhO compared to EtO. The larger pK(a)(0) values for the reactions of SA amines with 1 and 2, relative to their corresponding pyridinolysis, are attributed to the greater nucleofugalities of SA amines compared to isobasic pyridines. The smaller pK(a)(0) value for the reactions of SA amines with 2 than with O-ethyl S-(2,4-dinitrophenyl) dithiocarbonate (pK(a)(0) = 9.2) is explained by the greater nucleofugality from T(++) of 2,4-dinitrophenoxide (DNPO(-)) relative to the thio derivative. The stepwise reactions of SA amines with 1 and 2, in contrast to the concerted mechanisms for the reactions of the same amines with the corresponding carbonates, is attributed to stabilization of T(++) by the change of O(-) to S(-). The simple mechanism for the SA aminolysis of 2 (only one tetrahedral intermediate, T(++)) is in contrast to the more complex mechanism (two tetrahedral intermediates, T(++) and T(-), the latter formed by deprotonation of T(++) by the amine) for the same aminolysis of the analogous thionocarbonate with 4-nitrophenoxide (NPO(-)) as nucleofuge. To our knowledge, this is the first example of a remarkable change in the decomposition path of a tetrahedral intermediate T by replacement of NPO(-) with DNPO(-) as the leaving group of the substrate. This is explained by (i) the greater leaving ability from T(++) of DNPO(-) than NPO(-) and (ii) the similar rates of deprotonation of both T(++) (formed with DNPO and NPO).  相似文献   

19.
A kinetic study is reported for nucleophilic substitution reactions of 2,4-dinitro-1-fluorobenzene (DNFB) with a series of secondary amines in MeCN and H2O at 25.0 degrees C. The reaction in MeCN results in an upward curvature in the plot of k(obsd) vs [amine], indicating that the reaction proceeds through a rate-limiting proton transfer (RLPT) mechanism. On the contrary, the corresponding plot for the reaction in H2O is linear, implying that general base catalysis is absent. The ratios of the microscopic rate constants for the reactions in MeCN are consistent with the proposed mechanism, e.g., the facts that k2/k(-1) < 1 and k3/k2 > 10(2) suggest that formation of a Meisenheimer complex occurs before the rate-limiting step and the deprotonation by a second amine molecule becomes dominant when [amine] > 0.01 M, respectively. The Br?nsted-type plots for k1k2/k(-1) and k1k3/k(-1) are linear with betanuc values of 0.82 and 0.84, respectively, which supports the proposed mechanism. The Br?nsted-type plot for the reactions in H2O is also linear with betanuc = 0.52 which has been interpreted to indicate that the reaction proceeds through rate-limiting formation of a Meisenheimer complex. DNFB is more reactive toward secondary amines in MeCN than in H2O. The enhanced basicity of amines as well as the increased stability of the intermediate whose charges are delocalized through resonance are responsible for the enhanced reactivity in the aprotic solvent.  相似文献   

20.
Second-order rate constants have been measured spectrophotometrically for the reactions of O-2,4-dinitrophenyl thionobenzoate (1) and 2,4-dinitrophenyl benzoate (2) with a series of substituted pyridines in 80 mol % H(2)O/20 mol % DMSO at 25.0 +/- 0.1 degrees C. The Br?nsted-type plots obtained are nonlinear with beta(1) = 0.26, beta(2) = 1.07, and pK(a) degrees = 7.5 for the reactions of 1 and beta(1) = 0.40, beta(2) = 0.90, and pK(a) degrees = 9.5 for the reactions of 2, suggesting that the pyridinolyses of 1 and 2 proceed through a zwiterionic tetrahedral intermediate T(+/-) with a change in the rate-determining step at pK(a) degrees = 7.5 and 9.5, respectively. The thiono ester 1 is more reactive than its oxygen analogue 2 except for the reaction with the strongest basic pyridine studied (pK(a) = 11.30). The k(1) value is larger for the reactions of 1 than for those of 2 in the low pK(a) region, but the difference in the k(1) value becomes negligible with increasing the basicity of pyridines. On the other hand, 1 exhibits slightly larger k(2)/k(-1) ratio than 2 in the low pK(a) region but the difference in the k(2)/k(-1) ratio becomes more significant with increasing the basicity of pyridines. Pyridines are more reactive than alicyclic secondary amines of similar basicity toward 2 in the pK(a) above ca. 7.2 but less reactive in the pK(a) below ca. 7.2. The k(1) value is slightly larger, but the k(2)/k(-1) ratio is much smaller for the reactions of 2 with pyridines than with isobasic secondary amines in the low pK(a) region, which is responsible for the fact that the weakly basic pyridines are less reactive than isobasic secondary amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号