首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The "anti-crown" B-hexamethyl 9-mercuracarborand-3 (1) was shown to complex halide ions (I-, Br-, Cl-) in an eta(3)-sandwich fashion. Symmetry-allowed interactions of the filled halide ion p-orbitals and the corresponding empty mercury p-orbitals result in three equivalent p(Hg)-p(halide)-p(Hg) three-center two-electron bonds and a sandwich structure. The molecular structures of [Li.(H(2)O)(4)][1(2).I].2CH(3)CN, MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2), and PPN[1(2).Cl] were determined by single-crystal X-ray diffraction studies. Compound [Li.(H(2)O)(4)][1(2).I].2CH(3)CN crystallized in the triclinic space group P-1, a = 13.312(8) A, b = 13.983(9) A, c = 13.996(9) A, alpha = 61.16(2) degrees, beta = 82.34(2) degrees, gamma = 86.58(2) degrees, V = 4365(2) A(3), Z = 1, R = 0.063, and R(w) = 0.171. Compound MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2) crystallized in the monoclinic space group C2/c, a = 24.671(8) A, b = 17.576(6) A, c = 26.079(8) A, beta = 106.424(6) degrees, V = 10847(6) A(3), Z = 8, R = 0.0607, and R(w) = 0.1506. Compound PPN[1(2).Cl] crystallized in the monoclinic space group C2/m, a = 37.27(2) A, b = 29.25(1) A, c = 10.990(4) A, beta = 100.659(7) degrees, V = 11774(8) A(3), Z = 4, R = 0.0911, and R(w) = 0.2369.  相似文献   

2.
The 31P{1H}-NMR characteristics of the complexes [HgX2( 1 )] and [HgX2-(PPh2Bz)2] (X = NO3, Cl, Br, I, SCN, CN) and the solid state structures of the complexes [HgCl2( 1 )] and [HgI2( 1 )] ( 1 = 2,11-bis (diphenylphosphinomethyl)benzo-[c]phenanthrene) have been determined. The 1J(199Hg, 31P) values increase in the order CN < I < SCN < Br < Cl < NO3. The two molecular structures show a distorted tetrahedral geometry about mercury. Pertinent bond lengths and bond angles from the X-ray analysis are as follows: Hg? P = 2.485(7) Å and 2.509 (8) Å, Hg? Cl = 2.525 (8) Å and 2.505 (10) Å, P? Hg? P = 125.6(3)°, Cl? Hg? Cl = 97.0(3)° for [HgCl2( 1 )] and Hg? P = 2.491 (10) Å and 2.500(11) Å, Hg? I = 2.858(5) Å and 2.832(3) Å, P? Hg? P = 146.0(4)°, I? Hg? I = 116.9(1)° for [HgI2( 1 )]. The equation, derived previously, relating 1J(199Hg, 31P) and the angles P? Hg? P and X? Hg? X is shown to be valid for 1 .  相似文献   

3.
A complete series of copper(ii) halide complexes [CuX(tptm)](X = F (), Cl (), Br (), I (); tptm = tris(2-pyridylthio)methyl) with a novel Cu(II)-C(sp(3)) bond has been prepared by the reactions of [Cu(tptm)(CH(3)CN)]PF(6)(.PF(6)) with corresponding halide sources of KF or n-Bu(4)NX (X = Cl, Br, I), and the trigonal bipyramidal structures have been confirmed by X-ray crystallography and/or EPR spectroscopy. The iodide complex easily liberates the iodide anion in acetonitrile forming the acetonitrile complex as a result. The EPR spectra of the complexes showed several superhyperfine structures that strongly indicated the presence of spin density on the halide ligands through the Cu-X bond. The results of DFT calculations essentially matched with the X-ray crystallographic and the EPR spectroscopic results. Cyclic voltammetry revealed a quasi-reversible reduction wave for Cu(II)/Cu(I) indicating a trigonal pyramidal coordination for Cu(I) states. A coincidence of the redox potential for all [CuX(tptm)](0/+) processes indicates that the main oxidation site in each complex is the tptm ligand.  相似文献   

4.
A series of mercury(II) ionic liquids, [C(n)mim][HgX(3)], where [C(n)mim] = n-alkyl-3-methylimidazolium with n = 3, 4 and X = Cl, Br, have been synthesized following two different synthetic approaches, and structurally characterized by means of single-crystal X-ray structure analysis ([C(3)mim][HgCl(3)] (1), Cc (No. 9), Z = 4, a = 16.831(4) ?, b = 10.7496(15) ?, c = 7.4661(14) ?, β = 105.97(2)°, V = 1298.7(4) ?(3) at 298 K; [C(4)mim][HgCl(3)] (2), Cc (No. 9), Z = 4, a = 17.3178(28) ?, b = 10.7410(15) ?, c = 7.4706(14) ?, β = 105.590(13)°, V = 1338.5(4) ?(3) at 170 K; [C(3)mim][HgBr(3)] (3), P2(1)/c (No. 14), Z = 4, a = 10.2041(10) ?, b = 10.7332(13) ?, c = 14.5796(16) ?, β = 122.47(2)°, V = 1347.2(3) ?(3) at 170 K; [C(4)mim][HgBr(3)] (4), Cc (No. 9), Z = 4, a = 17.093(3) ?, b = 11.0498(14) ?, c = 7.8656(12) ?, β = 106.953(13)°, V = 1421.1(4) ?(3) at 170 K). Compounds 1, 2, and 4 are isostructural and are characterized by strongly elongated trigonal [HgX(5)] bipyramids, which are connected via common edges in chains. In contrast, 3 contains [Hg(2)Br(6)] units formed by two edge-sharing tetrahedra. With melting points of 69.3 °C (1), 93.9 °C (2), 39.5 °C (3), and 58.3 °C (4), all compounds qualify as ionic liquids. 1, 2, and 4 solidify upon fast cooling as glasses, whereas 3 crystallizes. Cyclic voltammetry shows two separate, quasi-reversible redox processes, which can be associated with the 2Hg(2+)/Hg(2)(2+) and Hg(2)(2+)/2Hg redox couples.  相似文献   

5.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

6.
Dark-green platy crystals of the new compound Pb31O22Br10Cl8 (1) have been obtained by rapid quenching of a lead oxide halide melt. The structure of 1 (triclinic, P1, a = 12.1192(7) angstroms, b = 16.2489(10) angstroms, c = 18.3007(11) angstroms, alpha = 93.104(2) degrees, beta = 95.809(2) degrees, gamma = 111.252(1) degrees, V = 3325.4(3) angstroms3, Z = 2) can be viewed as incorporation of [PbX6]4- halide units (X = Br, Cl) into the defect PbO matrix. The latter represents a two-dimensional [O22Pb30]16+ cationic layer of OPb4 tetrahedra that can be derived from the [OPb] tetrahedral layer observed in tetragonal PbO. The layer consists of 22 symmetrically inequivalent OPb4 tetrahedra and represents the topologically most complicated arrangement of tetrahedra known to date.  相似文献   

7.
The reactions of triethylphosphine telluride with SO2Cl2 or I2 produced the first structurally characterized tellurium-containing tertiary phosphine chalcogen dihalides, Et3PTeCl2 and Et3PTeI2, respectively, in good yields. The corresponding dibromide, Et3PTeBr2, was obtained by an in situ reaction between Et3PTeCl2 and two equivalents of Me3SiBr. This series of compounds has been characterized in the solid state by X-ray structural analyses and in solution by multinuclear NMR spectra. The structures of Et3PTeX2(X = Cl, Br, I) all show a T-shaped geometry around tellurium with weak Te...halogen interactions giving rise to centrosymmetric dimers. NMR data indicate that Et3PTeI2 exhibits the weakest P-Te bond in solution. The ionic complexes, [(Et3PO)2H]2[Te2I6] and [(Et3PO)2H]2[TeI4], were isolated from THF solutions of Et3PTeI2 and characterized by X-ray structural determinations.  相似文献   

8.
Under identical conditions, the reaction of 2-aminoethanethiol hydrochloride with HgX(2) (X = Cl and Br) in water yielded discrete hexanuclear [Hg(6)Cl(8)(SCH(2)CH(2)NH(3))(8))]Cl(4).4H(2)O (1) and nonanuclear [Hg(9)Br(15)(SCH(2)CH(2)NH(3))(9)](Cl(0.8)Br(0.2))(3) (2) complexes with unusual coordination environments. Compound 1 crystallizes as triclinic with a = 9.434(2) Angstroms, b = 10.999(2) Angstroms, c = 13.675(7) Angstroms, alpha = 92.9(7) degrees, beta = 105.2(7) degrees, and gamma = 96.9(7) degrees, whereas 2 is monoclinic with a = 14.162(3) Angstroms, b = 8.009(16) Angstroms, c = 19.604(4) Angstroms, alpha = gamma = 90.0 degrees, and beta = 92.7(3) degrees. In both cases, it is observed that the halide creates the secondary structure around trinuclear units (dimer in 1 and trimer in 2) through Hg-X bonding. Two independent types of Hg atoms (four- and five-coordinate in 1) and (three- and four-coordinate in 2) are observed. The geometry around Hg is quite variable with bridging thiolate and both bridging and terminal halides. The angles around Hg associated with the S atoms are more obtuse than expected from mercury(II) thiolates with a coordination number of more than 2. Intermolecular hydrogen bonding involving NH(3)(+), water molecules, and the halide atoms is responsible for the three-dimensional network in both compounds. Relatively short Hg...Hg interactions in 1 (3.797 and 3.776 Angstroms) and in 2 (3.605 and 3.750 Angstroms) are also observed. The compounds have been characterized with the help of (1)H and (13)C NMR, UV-Vis, infrared, Raman, and mass spectrometry, thermogravimetric analysis, and single X-ray crystallography.  相似文献   

9.
Two new isostructural layered oxohalides FeTe(3)O(7)X (X = Cl, Br) were synthesized by chemical vapor transport reactions, and their crystal structures and magnetic properties were characterized by single-crystal X-ray diffraction, Raman spectroscopy, magnetic susceptibility and magnetization measurements, and also by density functional theory (DFT) calculations of the electronic structure and the spin exchange parameters. FeTe(3)O(7)X crystallizes in the monoclinic space group P2(1)/c with the unit cell parameters a = 10.7938(5), b = 7.3586(4), c = 10.8714(6) ?, β = 111.041(5)°, Z = 4 for FeTe(3)O(7)Cl, and a = 11.0339(10), b = 7.3643(10), c = 10.8892(10) ?, β = 109.598(10)°, Z = 4 for FeTe(3)O(7)Br. Each compound has one unique Fe(3+) ion coordinating a distorted [FeO(5)] trigonal bipyramid. Two such groups share edges to form [Fe(2)O(8)] dimers that are isolated from each other by Te(4+) ions. The high-temperature magnetic properties of the compounds as well as spectroscopic investigations are consistent with an isolated antiferromagnetic spin dimer model with almost similar spin gaps of ~35 K for X = Cl and Br, respectively. However, deviations at low temperatures in the magnetic susceptibility and the magnetization data indicate that the dimers couple via an interdimer coupling. This interpretation is also supported by DFT calculations which indicate an interdimer exchange which amounts to 25% and 10% of the intradimer exchange for X = Cl and Br, respectively. The magnetic properties support the counterion character and a weak integration of halide ions into the covalent network similar to that in many other oxohalides.  相似文献   

10.
The tetramers of the group 11 (I) halides, M(4)X(4) (M = Cu, Ag, or Au; X = F, Cl, Br, or I), and corresponding group 11 (I) phosphanes, chloride and bromide (XMPH(3))(4) (X = Cl or Br), are investigated by the density functional theory. All coinage metal(I) halide tetramers adopt squarelike ring structures with an out-of-plane distorted (butterfly) D(2d) symmetry. These structures are much lower in energy than the more compact cubelike T(d) arrangements, which maximize dipole-dipole interactions and more closely resemble the solid-state structures of the copper and silver halides. Phosphine coordination completely changes the structures of these M(4)X(4) clusters. The copper(I) and silver(I) phosphane chloride and bromide tetramers adopt a heterocubane structure, slightly preferred over a step (ladder-type)-cluster structure well-known in the coordination chemistry of such compounds. In stark contrast, gold(I) phosphane chloride and bromide tetramers prefer assemblies of linear XAuPH(3) units with direct gold-gold contacts, resulting in a square planar, centered trigonal planar, or tetrahedral gold core.  相似文献   

11.
Mills AM  Ruck M 《Inorganic chemistry》2006,45(13):5172-5178
The compounds Ce53Fe12S90X3 (X = Cl, Br, I), which represent the first examples of rare-earth transition-metal sulfide halides, were prepared using the reactive-flux method, through reaction of Ce2S3, FeS, or Fe and S in a CeX3 flux at 1320 K. Their structures were determined by single-crystal X-ray diffraction. The compounds are isostructural, crystallizing in the trigonal space group Rm with Z = 1 [Ce53Fe12S90Cl3, a = 13.9094(9) A, c = 21.604(2) A, V = 3619.7(4) A3; Ce(53)Fe(12)S(90)Br(3), a = 13.916(1) A, c = 21.824(2) A, V = 3660.0(5) A3; Ce53Fe12S90I3, a = 13.863(3) A, c = 21.944(6) A, V = 3652(2) A3]. The structure adopted is a stuffed variant of the La52Fe12S90 structure type. Fe2S9 dimers of face-sharing octahedra are linked by face- and vertex-sharing capped CeS6 trigonal prisms, forming a three-dimensional framework containing cuboctahedral cavities of two sizes. The smaller cavities accommodate alternative sites for disordered cerium atoms. The larger cavities, which remain empty in the parent structure, are filled by halogen atoms in Ce53Fe12S90X3. Alternatively, the structure can be described as a 9-fold superstructure of the Mn5Si3 structure type (P6(3)/mcm), with a = a' and c = 3c'. Temperature-dependent magnetic susceptibility measurements suggest that Ce53Fe12S90I3 may order antiferromagnetically at low temperatures.  相似文献   

12.
The syntheses, structures, and characterization of four new lead(II)-tellurium(IV)-oxide halides, Pb(3)Te(2)O(6)X(2) and Pb(3)TeO(4)X(2) (X = Cl or Br) are reported. The materials are synthesized by solid-state techniques, using Pb(3)O(2)Cl(2) or Pb(3)O(2)Br(2) and TeO(2) as reagents. The compounds have three-dimensional structural topologies consisting of lead-oxide halide polyhedra connected to tellurium oxide groups. In addition, the Pb(2+) and Te(4+) cations are in asymmetric coordination environments attributable to their stereoactive lone pair. We also demonstrate that Pb(3)Te(2)O(6)X(2) and Pb(2)TeO(4)X(2) can be interconverted reversibly through the loss or addition of TeO(2). X-ray data: Pb(3)Te(2)O(6)Cl(2), monoclinic, space group C2/m (No. 12), a = 16.4417(11) A, b = 5.6295(4) A, c = 10.8894(7) A, beta = 103.0130(10) degrees, Z = 4; Pb(3)Te(2)O(6)Br(2), monoclinic, space group C2/m (No. 12), a = 16.8911(8) A, b = 5.6804(2) A, c = 11.0418(5) A, beta = 104.253(2) degrees, Z = 4; Pb(3)TeO(4)Cl(2), orthorhombic, space group Bmmb (No. 63), a = 5.576(1) A, b = 5.559(1) A, c = 12.4929(6) A, Z = 4; Pb(3)TeO(4)Br(2), orthorhombic, space group Bmmb (No. 63), a = 5.6434(4) A, b = 5.6434(5) A, c = 12.9172(6) A, Z = 4.  相似文献   

13.
Yellowish elongated crystals of the two new compounds Pb6LaO7Br (1) and Pb6LaO7Cl (2) have been obtained by the method of solid-state reactions. Both structures can be described in the terms of oxo-centered tetrahedra. The structures of 1 and 2 consist of [O7Pb6La]+ chains that are built from oxocentered OA4 (A = Pb, La) tetrahedra. The halogen ions connect the chains through weak Pb-X bonds. An arrangement of eight OA4 tetrahedra that all share the same central La atom forms a [O8Pb10La3]13+ cluster. The clusters are linked into chains, and additional OPb4 tetrahedra are attached to the chains. Incorporation of Cl atoms instead of Br atoms into the structure causes a lowering of the symmetry from Cmcm to C2/m.  相似文献   

14.
By reaction of Na2[B9H9] with the appropriate N-halogenosuccinimide, the monohalogenated anion [1-XB9H8]2- (X = Cl, Br, or I) is formed. The X-ray diffraction analyses performed on single crystals of (Ph4P)2[1-XB9H8].CH3CN (X = Cl, Br, I) reveal that the tricapped trigonal prismatic geometry of the cluster is retained after substitution in the 1-position. Crystallographic data are as follows for (Ph4P)2[1-XB9H8].CH3CN. X = Cl, Br: monoclinic, space group P2(1), a = 10.7 A, b = 32.9 A, c = 13.8 A, beta = 96 degrees, Z = 4, R1 = 0.038 and R1 = 0.036, respectively. X = I: monoclinic, space group P2(1)/n, a = 10.5 A, b = 13.6 A, c = 33.4 A, beta = 94 degrees, Z = 4, R1 = 0.094. The compounds have been characterized by vibrational and 11B NMR spectroscopy as well.  相似文献   

15.
The coordination behavior of [(Cp*Mo)2As2S3] (3) (Cp* = C5Me5) toward Cu(I) halides was investigated. One dimensional polymers of the general formula [(Cp*Mo)2As2S3(CuHal)2]n (Hal = Cl, 4; Br, 5) and an oligomer of composition [{(Cp*Mo)2As2S3}3(CuI)7] (6) formed upon the reaction of 3 with the corresponding copper halide. All of the compounds were characterized by ESI-MS, elemental analysis, and single-crystal X-ray crystallography. The solid-state structures of 4 and 5 are isostructural and contain 1D S-shaped chains. This peculiar folding is achieved by alternating planar and folded Cu2Hal2 rings linked together by the central monosulfide bridge of the middle deck of the organometallic unit. The structure of 6 is characterized by a novel [CuI]7 aggregate, which forms a very flat Cu6I3S3 bowl along with three integrated peripheral [(Cp*Mo)2As2S3] building blocks. In contrast to earlier findings, the middle deck of the organometallic units consists in all structures of two trapezoidal AsS dumbbells and one monosulfide ligand.  相似文献   

16.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

17.
Two quaternary silver selenoarsenates Cs3AgAs4Se8 (I) and CsAgAs2Se4 (II) have been discovered by methanothermal reaction of Li3AsSe3 with AgBF4 in the presence of the respective alkali metal sources Cs2CO3 and CsCl. Orange crystals of Cs3AgAs4Se8 (I) were formed after reaction at 120 degrees C for 72 h, whereas red CsAgAs2Se4 (II) was obtained under slightly different conditions at 140 degrees C for 70 h. Both compounds possess novel two-dimensional (2D) polyanions consisting of infinite 1 infinity[AsSe2]- chains that are interconnected by Ag+ ions in different coordination patterns. In I, a double layer of 1 infinity[AsSe2]- chains is bridged by distorted trigonal planar coordinated Ag+ atoms to form a 2 infinity[AgAs4Se8]3- layer with a thickness of about 11.3 A. The nonbonding Ag...Ag distances are about 4.220 A, and large cavities within the layers accommodate for three of the four crystallographic Cs+ cations. The double amount of Ag+ atoms per AsSe2 chain unit in II leads to simple layers 2 infinity[AgAs2Se4]- [=[Ag2As4Se8]2-] in which the Ag+ atoms are arranged in rows between the 1 infinity[AsSe2]- chains, with alternating Ag...Ag distances of 3.053(3) and 3.488(3) A. Hereby the 1 infinity[AsSe2]- polyanions show a disorder within the central (-As-Seb)- chain (b = bridging), while the positions of the terminal Se atoms (Set) remain unaffected. The thermal, optical, and spectroscopic properties of the compounds are reported. Both I and II melt with decomposition and are wide band gap semiconductors with values of 2.07 and 1.79 eV, respectively. Raman spectroscopic data show typical band patterns expected for infinite [AsSe2]- chains. Crystal Data: Cs3AgAs4Se8 (I), monoclinic, C2/c, a = 25.212(2) A, b = 8.0748(7) A, c = 22.803(2) A, beta = 116.272(2) degrees, Z = 8; CsAgAs2Se4 (II), monoclinic, P2(1)/n, a = 10.9211(1) A, b = 6.5188(2) A, c = 13.7553(3) A, beta = 108.956(1) degrees, Z = 4.  相似文献   

18.
Mixtures of [Ph(3)PNPPh(3)](+)Cl(-) with CuBr(2) (or CuBr(2)+CuCl(2)) in ethanol/dichloromethane yield crystals containing three-coordinate copper(II) with mixed chloride and bromide ligands, namely [Ph(3)PNPPh(3)](+)[CuCl(0.9)Br(2.1)](-) (1) and [Ph(3)PNPPh(3)](+)[CuCl(2.4)Br(0.6)](-) (2). The trigonal-planar coordination of copper(II) is angularly distorted but unambiguous, as there is no other halide ligand within 6.7 A of the copper atom. Density functional theory (DFT) calculations on planar [CuClBr(2)](-) show that the energy surface for angle bending is very soft. Crystallisation in the presence of CH(3)CN yields [Ph(3)PNPPh(3)](+)[CuCl(0.7)Br(2.3)(NCCH(3))](-) (3), in which there is additional secondary coordination by NCCH(3) (Cu-N 2.44 A). DFT calculations of the potential energy surface for this secondary coordination show that it is remarkably flat (<3 kcal mol(-1) for a variation of Cu-N by 0.8 A). The crystal packing in 1, 2 and 3, which involves multiple phenyl embraces between [Ph(3)PNPPh(3)](+) ions and numerous C-H...Cl and C-H...Br motifs, is associated with intermolecular energies that are larger than the variations in intramolecular energies. For reference, the crystal structures of [Ph(3)PNPPh(3)(+)](2)[Cu(2)Cl(6)](2-) (4) and [Ph(3)PNPPh(3)(+)](2)[Cu(2)Br(6)](2-) (5) are described. We conclude 1) that three-coordinate copper(II) with monatomic halide ligands, although uncommon, can be regarded as normal, 2) that steric control by ligands is not necessary to enforce three-coordination, 3) that a hydrophobic aryl environment stabilises [Cu(Cl/Br)(3)](-), and 4) that the energy change in the transition from three- to four-coordinate copper(II) is very small (ca 5 kcal mol(-1)).  相似文献   

19.
The structure, bonding and vibrational properties of the mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes were studied using various quantum chemical methods (HF, MP2 and the Becke3-Lee-Yang-Parr exchange-correlation density functional) in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. Our comparative study indicated the superiority of MP2 theory while the HF and B3-LYP methods as well as less sophisticated basis sets failed for the correct energetic relations. In particular, f polarization functions on Li and X proved to be important for the Li...X interaction in the complexes. From the three characteristic structures of such complexes, possessing 1-(C3v), 2-(C2v), or 3-fold coordination (C3v) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are located considerably lower on the potential energy surface then the monodentate isomer. Therefore only the bi- and tridentate isomers have chemical relevance. The monodentate isomer is only a high-lying local minimum in the case of X = F. For X = Cl, Br, and I this structure is found to be a second-order saddle point. The bidentate structure was found to be the global minimum for the systems with X = F, Cl, and Br. However, the relative stability with respect to the tridentate structure is very small (1-5 kJ/mol) for the heavier halide derivatives and the relative order is reversed in the case of the iodides. The energy difference between the three structures and the dissociation energy decrease in the row F to I. The ionic bonding in the complexes was characterized by natural charges and a topological analysis of the electron density distribution according to Bader's theorem. Variation of the geometrical and bonding characteristics between the lanthanum and dysprosium complexes reflects the effect of "lanthanide contraction". The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of LiLnX4 molecules.  相似文献   

20.
本文应用相对论赝势从头计算方法, 在不同基组水平上, 系统地研究了卤化汞(HgX_2, X=Cl,Br,I)系列的电子结构。表明除Hg的6s主要参与成键外, 5dz~2也起了重要的作用。并且随卤素原子序的增加, π成键作用也增强。同时还应用单电子自旋-轨道耦合方法, 研究了旋-轨耦合效应的影响, 指定了该系列化合物的光电子能谱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号