首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu L  Lu M  Yin X 《Talanta》2008,75(5):1227-1233
A microchip electrophoresis method was established for the determination of intracellular superoxide (O2) in individual HepG2 cells. Dihydroethidium (DHE) was used as the specific fluorescent probe to react with intracellular O2 to form the fluorescent 2-hydroxyethidium. Excellent resolution between 2-hydroxyethidium and ethidium cation (E+) can be achieved within 20 s. E+ was reported to be generated from photochemical oxidation of DHE and interfere the determination of O2 with fluorescence microscopic technique. An extremely low detection limit of 2.0 amol was achieved owing to the minute sample volume and insignificant dispersion effect during microfluidic chip-based electrophoretic separation. Furthermore, only 2-hydroxyethidium peak was detected with the suggested single-cell analysis method, which indicates the photooxidation of DHE to E+ could be blocked by isolating either oxygen or light from them.  相似文献   

2.
A unique polymer matrix that is suitable for immobilizing growing cells has been developed. Alginate was chemically modified with polyethyleneimine (PEI), and the resultant polymer aggregate was evaluated as a cell carrier. Our method of immobilization depends on reversible gelation of the PEI-modified alginate. Our hypothesis is that immobilized cells grow by dissolving the surrounding gel matrix; the dissolved polymer adduct is displaced peripherally and gelled again by the influx of calcium ion from the surrounding fermentation broth, retaining both cells and carrier polymer in the gel beads. Thus, the immobilized cells gain space for growth by expanding the carrier matrix. The PEI modification offers the following advantages: (1) improved mechanical strength; (2) improved cell retention; (3) increased catalyst life; (4) ease of pelletization; and (5) an apparent bacteriostatic capability. When immobilized yeast cells were applied to a continuous ethanol fermentation, 94% theoretical conversion of glucose to ethanol was observed, with a reactor productivity of 15–30 g/L/h in a nonsterile reactor. A 3-mo catalyst life and minimal cell washout were observed.  相似文献   

3.
Photo-DSC was used to investigate the cure kinetics of a photo-initiated resin. The exothermal photo-polymerization reactions were performed in isothermal mode. The irradiation of photo-initiated resin was studied under different conditions of temperature, UV lamp intensity, and reaction atmosphere (nitrogen and air). The results obtained by photo-DSC allowed us to determine kinetic data of the photo-polymerized reactions: the global activation energy and reaction enthalpy, and the conversion as a function of time and temperature. Modulated temperature DSC measurements were carried out to verify whether vitrification occurs during polymerization. The conversion at the top and bottom of irradiated samples was obtained by FT-IR spectroscopy before and after photo-polymerization. A non-homogenous photo-polymerization into the material was observed, probably because of the light absorptions effects within the uppermost layers.  相似文献   

4.
Continuous analysis of two dyes loaded into single mammalian cells using laser-based lysis combined with electrophoretic separation was developed and characterized on microfluidic chips. The devices employed hydrodynamic flow to transport cells to a junction where they were mechanically lysed by a laser-generated cavitation bubble. An electric field then attracted the analyte into a separation channel while the membranous remnants passed through the intersection towards a waste reservoir. Phosphatidylcholine (PC)-supported bilayer membrane coatings (SBMs) provided a weakly negatively charged surface and prevented cell fouling from interfering with device performance. Cell lysis using a picosecond-pulsed laser on-chip did not interfere with concurrent electrophoretic separations. The effect of device parameters on performance was evaluated. A ratio of 2 : 1 was found to be optimal for the focusing-channel : flow-channel width and 3 : 1 for the flow-channel : separation-channel width. Migration times decreased with increased electric field strengths up to 333 V cm(-1), at which point the field strength was sufficient to move unlysed cells and cellular debris into the electrophoretic channel. The migration time and full width half-maximum (FWHM) of the peaks were independent of cell velocity for velocities between 0.03 and 0.3 mm s(-1). Separation performance was independent of the exact lysis location when lysis was performed near the outlet of the focusing channel. The migration time for cell-derived fluorescein and fluorescein carboxylate was reproducible with <10% RSD. Automated cell detection and lysis were required to reduce peak FWHM variability to 30% RSD. A maximum throughput of 30 cells min(-1) was achieved. Device stability was demonstrated by analyzing 600 single cells over a 2 h time span.  相似文献   

5.
A microfluidic device that incorporates continuous perfusion and an on-line electrophoresis immunoassay was developed, characterized, and applied to monitoring insulin secretion from single islets of Langerhans. In the device, a cell chamber was perfused with cell culture media or a balanced salt solution at 0.6 to 1.5 microL min(-1). The flow was driven by gas pressure applied off-chip. Perfusate was continuously sampled at 2 nL min(-1) by electroosmosis through a separate channel on the chip. The perfusate was mixed on-line with fluorescein isothiocyanate-labeled insulin (FITC-insulin) and monoclonal anti-insulin antibody and allowed to react for 60 s as the mixture traveled down a 4 cm long reaction channel. The cell chamber and reaction channel were maintained at 37 degrees C. The reaction mixture was injected onto a 1.5 cm separation channel as rapidly as every 6 s, and the free FITC-insulin and the FITC-insulin-antibody complex were separated under an electric field of 500 to 600 V cm(-1). The immunoassay had a detection limit of 0.8 nM and a relative standard deviation of 6% during 2 h of continuous operation with standard solutions. Individual islets were monitored for up to 1 h while perfusing with different concentrations of glucose. The immunoassay allowed quantitative monitoring of classical biphasic and oscillatory insulin secretion with 6 s sampling frequency following step changes in glucose from 3 to 11 mM. The 2.5 cm x 7.6 cm microfluidic system allowed for monitoring islets in a highly automated fashion. The technique should be amenable to studies involving other tissues or cells that release chemicals.  相似文献   

6.
A rapid microfluidic based capillary electrophoresis immunoassay (CEIA) was developed for on-line monitoring of glucagon secretion from pancreatic islets of Langerhans. In the device, a cell chamber containing living islets was perfused with buffers containing either high or low glucose concentration. Perfusate was continuously sampled by electroosmosis through a separate channel on the chip. The perfusate was mixed on-line with fluorescein isothiocyanate-labeled glucagon (FITC-glucagon) and monoclonal anti-glucagon antibody. To minimize sample dilution, the on-chip mixing ratio of sampled perfusate to reagents was maximized by allowing reagents to only be added by diffusion. Every 6 s, the reaction mixture was injected onto a 1.5-cm separation channel where free FITC-glucagon and the FITC-glucagon–antibody complex were separated under an electric field of 700 V cm−1. The immunoassay had a detection limit of 1 nM. Groups of islets were quantitatively monitored for changes in glucagon secretion as the glucose concentration was decreased from 15 to 1 mM in the perfusate revealing a pulse of glucagon secretion during a step change. The highly automated system should be enable studies of the regulation of glucagon and its potential role in diabetes and obesity. The method also further demonstrates the potential of rapid CEIA on microfluidic systems for monitoring cellular function.  相似文献   

7.
This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA‐MB‐231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA‐MB‐231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA‐MB‐231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.  相似文献   

8.
Microfluidic impedance pulse sensor has emerged as an easily handled and low‐cost platform in the electrical analysis of biological cells. In the conventional method, impedance sensor demanded expensive patterning metal electrodes on the substrate, which are directly in touch with electrolytes in order to measure the microfluidic channel impedance change. In this article, a cost‐effective microfluidic impedance sensor built upon a dielectric film coated printed circuit board is introduced. Impedance electrodes are protected by a dielectric film layer from electrochemical erosion between electrodes and electrolyte. Human red blood cells from adult and neonatal were utilized to demonstrate the feasibility of the proposed device in the electroanalysis of biological cells.  相似文献   

9.
Yu H  Kwon JW  Kim ES 《Lab on a chip》2005,5(3):344-349
This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.  相似文献   

10.
《Mendeleev Communications》2022,32(4):504-506
The Raman spectrum of a single erythrocyte captured by a microfluidic chip was recorded to determine the conformation of hemoglobin under conditions similar to the hemodynamics of a blood vessel. Amplitude changes in the Raman spectrum at 1355, 1375, 1552, 1620, 1585 and 1637 cm?1 reflect changes in pO2 due to O2 binding to hemoglobin heme.  相似文献   

11.
The measurement of single poly(ethylene glycol) (PEG) molecules interacting with individual bilayer lipid membrane-bound ion channels is presented. Measurements were performed within a polymer microfluidic system including an open-well bilayer lipid membrane formation site, integrated Ag/AgCl reference electrodes for on-chip electrical measurements, and multiple microchannels for independent ion channel and analyte delivery. Details of chip fabrication, bilayer membrane formation, and alpha-hemolysin ion channel incorporation are discussed, and measurements of interactions between the membrane-bound ion channels and single PEG molecules are presented.  相似文献   

12.
In this work, a viscosimeter implemented on a microfluidic chip is presented. The physical principle of this system is to use laminar parallel flows in a microfluidic channel. The fluid to be studied flows side by side with a reference fluid of known viscosity. By using optical microscopy, the shape of the interface between both fluids can be determined. Knowing the flow rates of the two liquids and the geometrical features of the channel, the mean shear rate sustained by the fluid and its viscosity can thus be computed. Accurate and precise measurements of the viscosity as a function of the shear rate can be made using less than 300 microL of fluid. Several complex fluids are tested with viscosities ranging from 10(-)(3) to 70 Pa.s.  相似文献   

13.
Determination of SARS-coronavirus by a microfluidic chip system   总被引:4,自引:0,他引:4  
Zhou X  Liu D  Zhong R  Dai Z  Wu D  Wang H  Du Y  Xia Z  Zhang L  Mei X  Lin B 《Electrophoresis》2004,25(17):3032-3039
  相似文献   

14.
15.
Fusarium solani pisi recombinant cutinase, immobilized by entrapment in calcium alginate and by covalent binding on porous silica, was used to catalyze the hydrolysis of tricaprylin. The influence of relevant parameters on the catalytic activity such as pH, temperature, and the substrate concentration were studied. Cutinase immobilized by entrapment presented a Michaelis-Menten kinetics for tricaprylin concentrations up to 200 mM. At higher concentrations of substrate, inhibition was observed. For covalent binding immobilization, diffusional limitations were observed at low substrate concentrations and substrate inhibition occurred for concentrations higher than 150 mM. The stability of immobilized cutinase was also evaluated. The enzyme immobilized by entrapment showed a high stability, in contrast to the immobilization on porous silica.  相似文献   

16.
Li H  Yeung ES 《Electrophoresis》2002,23(19):3372-3380
On-line capillary polymerase chain reaction (PCR) coupled with laser-induced fluorescence detection was successfully demonstrated for individual human cells. A single 50 num inner diameter (ID) fused-silica capillary served both as the reaction vessel and for isolating single cells. SYBR Green I dye was added into the reaction mixture for dynamic fluorescence labeling. Because of the small ID of the capillary, PCR-amplified DNA fragments from single cells were localized in the capillary, providing discrete product zones with concentrations at readily detectable levels. With selective primer design, only cells containing the DNA of interest were amplified. By counting the number of peaks in the capillary via electromigration past a detection window, the number of targeted cell templates could be determined. Identification of the 295 bp fragment beta-actin gene from individual human lymphoblast cell was demonstrated. Independent on-column cell counting provided positive correlation between the starting cell templates and the final PCR products. This opens up the possibility of highly selective and sensitive disease diagnosis at an early stage, when only a few cells in the population are defective.  相似文献   

17.
It has been shown that when the protease ofBacillus mesentericus is immobilized on polyethylene with grafted-on polyacrylic acid by the carbodiimide method there is a considerable retention of its activity and an increase in its thermal stability, and the immobilized preparations are active on repeated use.Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Odessa. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 512–516, July–August, 1983.  相似文献   

18.
Intercellular Ca2+ waves are propagation of Ca2+ transients among cells that could be initiated by chemical stimulation. Current methods for analyzing intercellular Ca2+ waves are difficult to realize localized chemical stimulations upon the target cell without interfering with adjacent contacting cells. In this paper, a simple and flexible microfluidic method was developed for investigating the intercellular communication of Ca2+ signals. A cross-patterned microfluidic chip was designed and fabricated with polydimethylsiloxane as the structural material. Localized chemical stimulation was achieved by a new strategy based on hydrodynamic gating technique. Clusters of target cells were seeded at the location within 300 μm downstream of the intersection of the cross-shaped microchannel. Confined lateral molecular diffusion largely minimized the interference from diffusion-induced stimulation of adjacent cells. Localized stimulation of the target cell with adenosine 5′-triphosphate successfully induced the propagation of intercellular Ca2+ waves among a population of adjacent contacting cells. Further inhibition studies verified that the propagation of calcium signals among NIH-3 T3 cells was dependent on direct cytosolic transfer via gap junctions. The developed microfluidic method provides a versatile platform for investigating the dynamics of intercellular communications.
Fig
Analysis of intercellular communication by flexible hydrodynamic gating  相似文献   

19.
The individual encapsulation of living cells has a great impact on the areas of single cell-based sensors and devices as well as fundamental studies in single cell-based biology. In this work, living Chlorella cells were encapsulated individually with abiological, functionalizable TiO(2), by a designed catalytic peptide that was inspired by biosilicification of diatoms in nature. The bioinspired cytocompatible reaction conditions allowed the encapsulated Chlorella cells to maintain their viability and original shapes. After formation of the TiO(2) shells, the shells were postfunctionalized by using catechol chemistry. Our work suggests a bioinspired approach to the interfacing of individual living cells with abiological materials in a controlled manner.  相似文献   

20.
Song Y  Zhang H  Chon CH  Chen S  Pan X  Li D 《Analytica chimica acta》2010,681(1-2):82-86
This paper reports a lab-on-a-chip device that counts the number of bacteria flowing through a microchannel. The bacteria number counting is realized by a microfluidic differential Resistive Pulse Sensor (RPS). By using a single microfluidic channel with two detecting arm channels placed at the two ends of the sensing section, the microfluidic differential RPS can achieve a high signal-to-noise ratio. This method is applied to detect and count bacteria in aqueous solution. The detected RPS signals amplitude for Pseudomonas aeruginosa ranges from 0.05 V to 0.17 V and the signal-to-noise ratio is 5-17. The number rate of the bacteria flowing through the sensing gate per minute is a linear function of the sample concentration. Using this experimentally obtained correlation curve, the concentration of bacteria in the sample solution can be evaluated within several minutes by measuring the number rate of the bacteria flowing through the sensing gate of this microfluidic differential RPS chip. The method described in this paper is simple and automatic, and have wide applications in determining the bacteria and cell concentrations for microbiological and other biological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号