首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption bands in IR spectra of brassinolide, castasterone, and their 24-epi derivatives in the frequency range 3800–1000 cm–1 have been interpreted. A number of spectral features distinguishing brassinolide from castasterone have been found. The conducted analysis shows that the structural differences manifest themselves in IR spectra of the investigated brassinosteroids in the region of stretching vibrations of CO–H, C=O, C–OH, C–O–C, CH3, CH2, and CH groups. The main distinctions in IR spectra of brassinolides and castasterones are due to the B ring structure.  相似文献   

2.
We have analyzed the IR spectra obtained for steroidal phytohormones 24-epibrassinolide, 24-epicastasterone, 28-homobrassinolide, and 28-homocastasterone. The characteristic frequencies of the stretching vibrations of the hydrocarbon groups CH3, CH2, and CH and also the C=O groups in the spectra of brassinolides are higher than in the spectra of castasterones, which makes it possible to identify them from the IR spectra. Study of the spectra of these brassinosteroids in different media (pressed samples in KBr, films, solutions in CHCl3 and CDCl3) allowed us to establish the presence of intermolecular interactions in which C=O and OH groups, OH-OH groups participate, and also the possible formation of intramolecular hydrogen bonds between the OH groups of the molecules. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 610–616, September–October, 2007.  相似文献   

3.
The Raman spectra of the α, γ, and smectic modifications of isotactic polypropylene (PP) are studied. The most significant spectral differences are observed in the frequency range around 2960 cm−1 for the spectral doublet assigned to the asymmetric stretching vibrations of the CH3 groups and in the frequency range around 800 cm−1, which is used for analysis of the phase composition of isotactic PP. It is demonstrated that the peak positions and relative intensities of the doublet assigned to the asymmetric stretching vibrations of the CH3 groups can be used to identify the polymorph modifications of isotactic PP.  相似文献   

4.
IR spectra of steroid phytohormones of the stigmastane series (22R, 23R)-28-homocastasterone and (22R,23R)-28-homosecasterol and their isomers (22S,23S)-28-homocastasterone and (22S,23S)-28-homosecasterol have been analyzed. The 28-homocastasterone molecule contains diol groups in ring A and in the side chain whereas that of 28-homosecasterol has one diol group in the side chain. The lack of two OH groups in ring A of homosecasterol compared to homocastasterone results in the appearance of stretching vibrational bands of H–C= (νmax = 3025 cm–1) and –C=C (νmax = 1656 cm–1) groups of ring A. Substantial changes are observed in the area of OH stretching vibrations. Homocastasterones pressed in KBr possess twice as many OH groups as homosecasterols such that absorption band total intensities in IR spectra of both isomers caused by H-bonds of the diol groups in the side chain amount to 65% whereas the share of the 2α,3α group is only 35% of the total intensity. Hence the contribution from the side-chain OH groups of the studied brassinosteroids to the integral optical density of the bands exceeds that from the ring-A OH groups. In dilute CHCl3 solutions of the brassinosteroids, the conformations of the brassinosteroid side chains are not the same. As a result, intramolecular H-bonds of different energy are created. The optical density Dmax in band maxima of free OH groups for homocastasterones is three times higher than that for the corresponding band maxima of homosecasterol. This implies that Dmax for bands of free OH groups of the homocastasterone ring-A diol group is greater, in contrast with the relatively greater Dmax for bands of homosecasterol side-chain OH groups bound by an intermolecular H-bond. The homocastasterone diol groups also form intramolecular Hbonds more actively. The lack of the diol group in ring A of the homosecasterols does not affect the frequencies of the C=O stretching vibrations. This leads to the conclusion that the C=O group forms intermolecular H-bonds only with the side-chain OH groups of brassinosteroids pressed in KBr.  相似文献   

5.
IR spectroscopy measurements show that films of poly(diphenyl sulfophthalide) (PDSP), a cardo polymer, interact with atmospheric moisture during storage at room conditions. A total of 15 absorption bands were isolated in spectra of PDSP hydrated during storage, which belong to sorbed water and hydrolysis products. A number of absorption bands (within 1500–1800 cm−1 and 980–1100 cm−1) were obtained by subtracting the spectrum of the film after heating from that of the initial hydrated film. At least six individual bands in the region of the O-H bond stretching vibration were isolated by decomposing a broad complex band (3700–2000 cm−1) into Gaussian components. The isolated bands were tentatively assigned based on the available literature data and quantum-chemical calculations of the characteristics of a number of complexes of a diphenyl sulfophthalide model compound with water molecules. The IR spectra and energies of the hydrogen bonds formed were calculated at the B3LYP/6-311G(d, p) level. In particular, the absorption bands at 1010 and 1079 cm−1 were assigned to the symmetric stretching vibrations of the S=O bonds in the −SO3 anion, the 1062-cm−1 absorption band, to ν(C-OH), and the absorption bands at 3646, 3586, and 3475 cm−1, to complexes of water with sulfophthalide cycles of the polymer. After a long storage, PDSP largely transforms into a polymeric oxonium salt, and its spectrum becomes similar to that of a polymeric salt prepared by alkaline hydrolysis. A general mechanism of the interaction of PDSP with water is proposed, according to which the hydrolysis of the sulfophthalide cycles (SPC) by sorbed water yields new hydrophilic groups, sulfoacid, and hydroxyl groups. A further sorption of water by the sulfoacid results in its ionization and the formation of various hydroxonium forms. Sorption and hydrolysis are reversible processes: water is desorbed and the SPC is recovered when the polymer is heated to 100–150°C, as can be judged from an increase in the intensity of the S=O bond vibrations of the sulfophthalide cycle at 1352 and 1192 cm−1. The possibility of using strongly hydrated PDSP for manufacturing proton-conducting membranes is discussed.  相似文献   

6.
The reactive yellow 107 was polymerized by chemical oxidation method using potassium persulfate. The polymer was characterized by UV-VIS and Fourier transform infrared spectroscopy (FTIR) spectral studies. The peaks at 2,922 and 2,852 cm−1 in the FTIR spectrum of polyreactive yellow 107 are assigned to the symmetric and asymmetric stretching vibrations of CH2. The peak observed at 1,583 cm−1 for polyreactive yellow 107 may be assigned to the stretching vibration of C=O, N=N, and C=C, 1,347 cm−1 stretching vibration of C–N. The stretching vibrations of sulfone and sulfonic acid of S=O groups show a strong broad peak at 1,091 and 1,051 cm−1. The conductivity of the polymer was determined to be 5.57 × 10−5 S cm−1. The solubility of the chemically polymerized powder was ascertained and polyreactive yellow 107 showed good solubility in N,N-dimethyl formamide and dimethyl sulfoxide. The X-ray diffraction studies revealed the formation of nano-sized (84 nm) crystalline polymer. Using X-ray diffraction, behavior strain and dislocation density was also calculated. Scanning electron microscope analysis showed uniform crystalline nature of the polymer (200 nm). The thermogravimetric analysis, differential thermal analysis, and differential scanning calorimetry studies revealed good thermal stability of the polymer.  相似文献   

7.
J. S. Singh 《Pramana》2008,70(3):479-486
Laser Raman (200–4000 cm−1) and IR (200–4000 cm−1) spectra of 5-aminouracil were recorded in the region 200–4000 cm−1. Assuming a planar geometry and Cs point group symmetry, it has been possible to assign all the 36 (25a′ + 11a″) normal modes of vibration for the first time. The two NH bonds of the NH2 group appear to be equivalent as the NH2 stretching frequencies satisfy the empirical relation proposed for the two equivalent NH bonds of the NH2 group. The two NH2 stretching frequencies are distinctly separated from the CH/NH ring stretching frequencies. A strong and sharp IR band at 3360 cm−1 could be identified as the anti-symmetric NH2 mode whereas the band at 3290 cm−1 with smaller density could be identified as the symmetric NH2 stretching mode. All other bands have also been assigned different fundamentals/overtones/combinations.   相似文献   

8.
We present the results of a spectral study of the effect of low-intensity laser radiation on the molecular structure of blood and blood components. Analysis of the Fourier transform IR absorption spectra of blood confirmed the changes we observed previously in the oxygen transport characteristics of blood with intravenous exposure to the emission from a He-Ne laser. We show that structural and conformational changes in the hemoglobin tetramer, initiated by laser-induced photoreactions between Hb and oxygen, lead to characteristic changes in the shape and intensity of the IR bands for NH stretching vibrations, and also the amide I and amide II absorption bands. In the IR spectra of irradiated blood samples, we note increased absorption in the bands for stretching vibrations of the phosphate groups (945–1280 cm−1), which is evidence for an increase in the nucleic acid content (DNA, RNA). In the spectra of plasma and erythrocytes prepared from irradiated blood, there are no changes in this region of the IR spectrum. At the same time, in the IR spectra of samples of irradiated plasma, the intensity of the bands for stretching vibrations of the CH2 groups increases substantially. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 1, pp. 106–112, January–February, 2006.  相似文献   

9.
Use of low-temperature IR spectroscopy in studies of compounds with a developed system of hydrogen bonds such as DL-serine revealed a complete set of vibrational frequencies. The region of manifestation of stretching vibrations of OH groups involved in the formation of strong hydrogen bonds was found. It is shown experimentally that in a crystal some of the molecules of SL-serine exist in the nonionized form. On the basis of analysis of experimental data, frequency ranges of stretching deformation and torsional vibrations of NH 3 + , COO, and OH groups were determined more accurately. It is found that in the crystals there exist molecules of DL-serine with different spatial orientation of NH 3 + COO, and COH groups. It is shown that conformational diversity of molecular structures is also preserved at T=18 K. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 6, pp. 864–868, November–December, 1998.  相似文献   

10.
Several weak absorption bands have been observed in the optical absorption spectra of pure and rare-earth-doped YAl3(BO3)4 single crystals in the 3350– 3650 cm−1 wave number region. Two of them, peaking at about 3377 cm−1 and 3580 cm−1 in the 8 K spectra, appear in most of the samples. They are tentatively attributed to the stretching mode of OH ions incorporated in the crystal during the growth. An additional absorption band at about 5250 cm−1 at 8 K has also been detected in almost all samples. The temperature and polarization dependences of these bands, and their possible origin, are discussed.  相似文献   

11.
The absorption spectra of CH3OH, CH3OD, CD3OH, and CD3OD as pure liquids and as carbon tetrachloride solutions were measured in the 3,850 – 16,600cm?1 region. In addition to the various combination bands, the higher overtone bands of the hydrogen-bonded OH stretching vibration of self-associated methanols were observed at ~6470, 9300–9700, and 12,200 – 12,700 cm?1 with broad half-widths of ~700, ~1200, and ~1800 cm?1, respectively, and those of the OD stretching vibration, at ~4900, 7200–7400, and 9200–9600 cm?1 with half-widths of ~370, ~700, and ~1200 cm?1, respectively. With the aid of the observed frequencies, we determined the single minimum potential energy curve for the hydrogen-bonded OH and OD stretching vibrations of self-associated methanols. Furthermore, the absorption band due to double excitation of two neighboring OH groups linked together by a hydrogen bond was quantitatively analyzed by using the isotopic isolation technique. The double excitation band of CH3OH as pure liquid was found to appear at 6730 cm?1 with an absorbance of 0.08 at 1 mm light path length.  相似文献   

12.
C. Perez-Vicente  C. Julien 《Ionics》1995,1(5-6):387-392
We report the vibrational properties of lithium-intercalated SnSySe2−y (0≤y≤2) layered compounds. Infrared absorption spectra have been recorded as a function of temperature in the frequency range 50–600 cm−1. The new bands are interpreted as vibrational modes of lithium atoms against the nearest-neighbouring-chalcogen atoms located in the van der Waals gap. Results are analyzed in terms of stretching vibrations of Li-S4 and Li-S6 entities. From a comparison of the spectra, it is concluded that lithium ions are more likely to occupy tetrahedral sites in the lithium-rich phases. Using a simple model of lattice dynamics, the coupling force constants are determined and compared with those of the pristine materials. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995  相似文献   

13.
Ultra-thin MoO3 films were deposited onto glass and Si substrates by r.f. magnetron sputtering. The optical and IR properties of the films were studied in the range of 250 to 1000 nm and 400 to 1500 cm−1, respectively. The optical transmission spectra show a significant shift in absorption edge. The energy gap of the films deposited at 373 K and 0.1 mbar was found to be 3.93 eV, and it decreases with increasing substrate temperature and decreasing sputtering pressure. The IR transmittance spectra shows strong modes of vibrations of Mo=O and Mo–O–Mo units of MoO3 molecule. A significant change in energy gap and a shift in frequency of IR modes were observed in ultra-thin MoO3 films.  相似文献   

14.
Raman light scattering and IR absorption spectra of samples containing multilayer carbon nanotubes in different stages of purification by the selective oxidation technique have been investigated. It was found that the Raman spectra of carbon nanotubes exhibit softening of the mode at 1582 cm−1 corresponding to E 2g vibrations of graphite hexagons and a line at 120 cm−1 due to the radial vibrations of nanotubes. In IR absorption spectra measured in the region of 0.07–0.3 eV, several sets of lines with a spacing of 15 meV (120 cm−1) between lines of each group have been detected. We suggest that each group corresponds to electron transitions generating electron-hole pairs in semiconducting nanotubes and contains a phononless 00-line and its phonon replicas with spacing between them equal to the “breathing” mode energy of 120 cm−1. Measurements of electric conductivity at a frequency of 9300 MHz indicate that, in addition to semiconducting nanotubes, the samples contain nanotubes with properties of a highly disordered semimetal. Zh. éksp. Teor. Fiz. 113, 1883–1891 (May 1998)  相似文献   

15.
Molecular vibrations of C2H2 and C2D2 adsorbed on Pt(111) at 140 K and ∼300K have been measured by high resolution electron energy loss spectroscopy. The comparison of C2H2 and C2D2 spectra allows an unambiguous assignment of the observed losses to the excitation of C−H bending, C−H stretching, and C−C stretching modes of nondissociatively adsorbed acetylene. From the relative intensities of losses the hybridisation state is determined to be nearsp 2. The C−C stretching frequency indicates a C−C bond order of ∼1.8.  相似文献   

16.
The IR and Raman spectra are measured and analysed for sodium pyrophosphate decahydrate. The spectra are interpreted on the basis of P2O 7 4− ion and water vibrations. The observed results fit with the features predicted for the factor goup model. The appearance of two sets of frequencies in the stretching and bending regions of water suggests the existence of two kinds of water molecules in the crystal. This is confirmed by deuterium substitution.  相似文献   

17.
The composites xTiO2-(1−x)SiO2 (x = 0.1, 0.5, 0.9) were obtained by coprecipitation from solutions of alkoxides: tetraethoxysilane (TEOS) and titanium tetraisopropoxide (TIPT). Intermolecular interaction of the components of the composite is apparent in the IR absorption spectra in the 928–952 cm−1 region, and is connected with bending vibrations of the Si-O-Ti bond. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 5, pp. 724–728, September–October, 2008.  相似文献   

18.
DRIFT spectra of xerogels synthesized by co-condensation of tetraethoxysilane (or 1,2-bis(triethoxysilyl)ethane) and 3-aminopropyltriethoxysilane have been measured using termoevacuation in the temperature range 50-350 °C. The disappearance of bands related to the vibrations of water molecule with temperature growth and shifts of absorption band related to the deformation vibrations of amino groups to the high-frequency region have been observed. The formation of a new band in the range of 3650-3660 cm−1 has been attributed to stretching vibrations of silanol groups. The simplest change of surface layer composition in the amino-containing xerogels by water removal results in transformation of one type of hydrogen bond to another. The first type is associated with forming of cyclical structure with participation of 3-aminopropyl and silanol groups and water molecule, [≡Si(CH2)3H2N···HO(H)···HOSi≡], the other type is associated with the interaction of amino groups between each other.  相似文献   

19.
We have recorded the fluorescence excitation spectra of three heterocyclic compounds with a chain structure [BPO (2-phenyl-5-(4-diphenylyl)oxazole), POPOP (1,4-di[2-(5-phenyloxazolyl)]benzene, and TOPOT (1,4-di[2-(5-n-tolyloxazolyl)]benzene] and the fluorescence spectra of POPOP, under conditions where the molecules were cooled in an ultrasonic helium jet. A line structure is observed in the spectra of POPOP and TOPOT; for the BPO molecules, whose configuration changes considerably during electronic excitation, vibrational structure is apparent only in the low-frequency region of the excitation spectrum, and a diffuse spectrum is recorded starting from ν 0 0 + 200 cm−1. For all the compounds, in the spectra we recorded vibrations with frequencies up to 100 cm−1, arising due to the flexibility of the molecular structure. The rotational contours of the lines for the electronic and vibronic transitions of the POPOP molecules (Trot = 10.5 K) and TOPOT molecules (Trot = 15 K) are structureless and bell-shaped. The degree of polarization of the fluorescence Pfl for the jet-cooled POPOP molecules for excitation of vibrations along the absorption band up to 2000 cm−1 above ν 0 0 is practically constant (∼8.4%) and matches Pfl for high-temperature vapors. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 6, pp. 728–734, November–December, 2006.  相似文献   

20.
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared (IR) spectroscopy have been used to study the mineral pharmacolite Ca(AsO3OH)· 2H2O. The mineral is characterised by an intense Raman band at 865 cm−1 assigned to the ν1 (AsO3)2− symmetric stretching mode. The equivalent IR band is found at 864 cm−1. The low‐intensity Raman bands in the range from 844 to 886 cm−1 provide evidence for ν3 (AsO3) antisymmetric stretching vibrations. A series of overlapping bands in the 300‐450 cm−1 region are attributed to ν2 and ν4 (AsO3) bending modes. Prominent Raman bands at around 3187 cm−1 are assigned to the OH stretching vibrations of hydrogen‐bonded water molecules and the two sharp bands at 3425 and 3526 cm−1 to the OH stretching vibrations of only weakly hydrogen‐bonded hydroxyls in (AsO3OH)2− units. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号