首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

2.
The adsorption properties of cermet and track-etched poly(ethylene terephthalate) (PET-TM) membranes are compared with respect to proteins and water-soluble dyes. It is shown that the cermet membranes have a noticeably higher adsorption capacity (calculated per unit surface area) than the PET-TM. In this case, the character of adsorption of these substances on both types of membranes is quite similar and determined by the combination of ionic and hydrophobic interactions. The adsorption values of basic dyes are considerably higher than acid one because of the negative charge at the membrane surfaces. The isotherm of adsorption of the basic dye rhodamine 6G on PET-TM from aqueous solution is characterized by the inflection in the concentration range of lower than 1 µmol/l due to the presence of highly active adsorption sites on the surface. The adsorption of dyes considerably lowers on adding isopropanol to the aqueous solution. Using basic protein cytochrome C as an example, it is established that its adsorption on cermet membranes can be prevented by increasing solution ionic strength.Translated from Kolloidnyi Zhurnal, Vol. 67, No. 1, 2005, pp. 124–127. Original Russian Text Copyright © 2005 by Khataibe, Khokhlova, Trusov, Mchedlishvili.  相似文献   

3.
Surfaces based on grafted poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) "brushes" with a constant graft density of 0.39 chain/nm2 and chain length from 5 to 200 monomer units were prepared by surface-initiated atom transfer radical polymerization (ATRP) on silicon wafers. The chain length and layer thickness of the poly(MPC) grafts were varied via the ratio of MPC to sacrificial initiator. The surfaces were characterized by water contact angle, XPS, and AFM. The effect of poly(MPC) chain length on fibrinogen and lysozyme adsorption was studied in TBS buffer at pH 7.4. The adsorption of both proteins on the poly(MPC)-grafted surfaces was greatly reduced compared to the unmodified silicon. Adsorption decreased with increasing chain length of the poly(MPC) grafts. Grafts of chain length 200 (MW 59 000) gave adsorption levels of 7 and 2 ng/cm2, respectively, for fibrinogen and lysozyme at 1 mg/mL protein concentration, corresponding to reductions of greater than 98% compared to the unmodified silicon. Adsorption experiments using mixtures of the two proteins showed that the suppression of protein adsorption on the poly(MPC)-grafted surfaces was not strongly dependent on protein size or charge.  相似文献   

4.
Anthracene-labelled poly(methyl methacrylate) (PMMA) was prepared via atom transfer radical polymerization (ATRP) where 9,10-bis(chloromethyl)anthracene and CuCl/2,2′-bipyridine were used as the initiator and catalyst, respectively. Both the linear increase of the number average molecular mass with conversion and the narrow polydispersity in the resulting polymers suggest that the polymerization proceeds in a “living” fashion and the anthracene molecule is incorporated into the middle of the polymer backbone. The initiation efficiency was low, ca. 13%, presumably due to some side reactions which compete with the initiation reaction.  相似文献   

5.
Well-controlled polymerization of N-vinylpyrrolidone (NVP) on Au surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP) was carried out at room temperature by a silanization method. Initial attempts to graft poly(N-vinylpyrrolidone) (PVP) layers from initiators attached to alkanethiol monolayers yielded PVP films with thicknesses less than 5 nm. The combined factors of the difficulty in the controllable polymerization of NVP and the instability of alkanethiol monolayers led to the difficulty in the controlled polymerization of NVP on Au surfaces. Therefore, the silanization method was employed to form an adhesion layer for initiator attachment. This method allowed well-defined ATRP polymerization to occur on Au surfaces. Water contact angle, X-ray photoelectron spectroscopy (XPS), and reflectance Fourier transform infrared (reflectance FTIR) spectroscopy were used to characterize the modified surfaces. The PVP-modified gold surface remained stable at 130 °C for 3 h, showing excellent thermal stability. Thus, postfunctionalization of polymer brushes at elevated temperatures is made possible. The silanization method was also applied to modify SPR chips and showed potential applications in biosensors and biochips.  相似文献   

6.
Controlled polymerization of (meth)acrylamides was achieved by ATRP using the initiating system methyl 2‐chloropropionate/CuCl/tris(2‐dimethylaminoethyl)amine. Linear increase of molecular weights with conversion and low polydispersity (Mw/Mn < 1.2) were obtained in toluene, at room temperature, when N,N‐dimethylacrylamide was used as a monomer. However, the polymerization reached limited conversion, which could be enhanced by increasing the catalyst/initiator ratio. The limited conversion is not due to the loss of the active chains, but rather to the loss of activity of the catalytic system.  相似文献   

7.
Self-assembly of brush-like well-defined poly[poly(ethylene glycol) methyl ether methacrylate] homopolymers, abbreviated as P(PEGMA-475) and P(PEGMA-1100) is investigated in aqueous solution by employing dynamic/static light scattering (DLS/SLS) and transmission electron microscopy (TEM), whereas 475 and 1100 is molar mass of the respective PEGMA macromonomer. The mentioned brush-like homopolymers are synthesized by aqueous ATRP at room temperature. The critical association concentration (CAC) of the synthesized polymers in water depends on the length of the PEG side chains but not on the overall molar mass of the polymer. Thus, approximately the same CAC of approximately 0.35 mg/mL is estimated for various P(PEGMA-1100) samples, and approximately 0.7 mg/mL is estimated for P(PEGMA-475) series. All the investigated P(PEGMA-1100) samples form multimolecular micelles in aqueous solution, where the hydrodynamic size (Rh) and the aggregation number (Nagg) of micelles decreases as the molecular weight of P(PEGMA-1100) increases. This can be attributed to the increased steric hindrances between the PEG side chains in corona of micelles formed by higher molar mass P(PEGMA-1100). The tendency of micelle formation by samples of P(PEGMA-475) series is significantly lower than that of P(PEGMA-1100) series, as demonstrated by their significantly higher CAC and micelles of lower Nagg. The Rh of micelles does not depend strongly on polymer concentration, which suggests that these micelles are formed via the closed association model. Micelles formed by P(PEGMA-1100) series slightly shrink with increase in temperature from 25 to 60 degrees C, while those of P(PEGMA-475) series are found to be insensitive to the same temperature variation. Finally, TEM is carried out to visualize the formed micelles after transferring the aqueous solution to carbon film.  相似文献   

8.
The in situ ATRP (atom transfer radical polymerization) "grafting from" approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT). The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA to preliminarily functionalized MWNT (MWNT-Br). The resulting MWNT-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM, and TGA. Moreover, the approach has been extended to the copolymerization system, affording novel hybrid core-shell nanoobjects with MWNT as the core and amphiphilic poly(methyl methacrylate)-block-poly(hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel carbon nanotubes-based nanomaterials and molecular devices with tailor-made structure, architecture, and properties.  相似文献   

9.
10.
The ability to manipulate and control the surface properties of nylons is of crucial importance to their widespread applications. In this work, surface-initiated atom-transfer radical polymerization (ATRP) is employed to tailor the functionality of the nylon membrane and pore surfaces in a well-controlled manner. A simple two-step method, involving the activation of surface amide groups with formaldehyde and the reaction of the resulting N-methylol polyamide with 2-bromoisobutyryl bromide, was first developed for the covalent immobilization of ATRP initiators on the nylon membrane and its pore surfaces. Functional polymer brushes of 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)monomethacrylate (PEGMA) were prepared via surface-initiated ATRP from the nylon membranes. A kinetics study revealed that the chain growth from the membranes was consistent with a "controlled" process. The dormant chain ends of the grafted HEMA polymer (P(HEMA)) and PEGMA polymer (P(PEGMA)) on the nylon membranes could be reactivated for the consecutive surface-initiated ATRP to produce the corresponding nylon membranes functionalized by P(HEMA)-b-P(PEGMA) and P(PEGMA)-b-P(HEMA) diblock copolymer brushes. In addition, membranes with grafted P(HEMA) and P(PEGMA) brushes exhibited good resistance to protein adsorption and fouling under continuous-flow conditions.  相似文献   

11.
A new N-heterocyclic initiator N-[2-(8-heptadecenyl)-4,5-dihydro-1H-imidazole-1-ethyl]-2-bromoisobutyramide was synthesized and immobilized on the surface of iron. Methyl methacrylate was grafted from iron substrates via surface-initiated atom transfer radical polymerization (ATRP). The first-order kinetics of poly(methyl methacrylate) (PMMA) grafting from iron revealed the control of ATRP throughout the reaction, and the polymerization reached a high conversion producing polymers with good control of molecular weights (M n?=?68,800) and low polydispersity indexes (M w/M n?<?1.32). The thickness of the polymer brush films was greater than 47 nm after 7 h of reaction time. The grafting density was estimated to be 0.48 chains?nm?2. The iron surfaces at various stages of modification were characterized by scanning electron microscopy and energy dispersive spectrometer. The analytical results were consistent with a thin compact polymer coating on the surface of iron. Iron surface with grafted PMMA coating showed significant corrosion resistance. This work demonstrated that the surface-initiated ATRP is a versatile means of the surface modification of active metals with well-defined and functionalized polymer brushes.  相似文献   

12.
Streaming potential variation with pressure measured through poly(ethylene terephthalate) track-etched membranes of different pore sizes led to the determination of an apparent interfacial potential zetaa in the presence of 10-2 M KCl. The variation of zetaa with the pore radius r0 is interpreted by (i) the electric double layer overlap effect and (ii) the presence of a conductive gel layer. We propose a method which integrates both effects by assuming a simple model for the conductive gel at the pore wall. We observed the following three domains of pore size: (i) r0 > 70 nm, where surface effects are negligible; (ii) approximately 17 nm < r0 < 70 nm, where the pore/solution interface could be described as a conductive gel of thickness around 1 nm; (iii) r0 < approximately 17 nm, which corresponds to the region strongly damaged by the ion beam and is not analyzed here. The first one (zeta = -36.2 mV) corresponds to the raw material when etching has completely removed the ion beam predamaged region, which corresponds to the second intermediate domain (zeta = -47.3 mV). There the conductance of the gel layer deduced from the treatment of streaming potential data was found to be compatible with the number of ionic sites independently determined by the electron spin resonance technique.  相似文献   

13.
This contribution describes a method to prepare high-capacity anion-exchange membranes for chromatographic bioseparations. Surface-initiated atom transfer radical polymerization was used to graft poly(2-dimethylaminoethyl methacrylate) (poly(DMAEMA)) nanolayers from the pore surfaces of commercially available regenerated cellulose membranes. Initial measurements were made to determine the thickness evolution of the poly(DMAEMA) nanolayers, using a model flat substrate designed to mimic the three-dimensional nature of initiator incorporation into the membrane. Thereafter, polymerization time was used as the independent variable to control the mass of polymer grafted from the membrane surfaces and, thus, the protein binding capacity. ATR-FTIR, AFM, and SEM were used to characterize changes in the chemical functionality, surface topography, and pore morphology of membranes as a result of modification. Bovine serum albumin was used to evaluate the static protein binding capacity of poly(DMAEMA)-modified membranes. Maximum static binding capacities increased with increasing polymerization time in a linear fashion for short polymerization times (<6 h). For longer polymerization times, capacity increased non-linearly, eventually reaching a plateau value of 66.3 mg/mL.  相似文献   

14.
This article reports on the synthesis of thermosensitive polymer brushes on silica nanoparticles by atom transfer radical polymerization (ATRP) and the study of thermo-induced phase transitions in water. Silica nanoparticles were prepared by the St?ber process and the surface was functionalized by an ATRP initiator. Surface-initiated ATRPs of methoxydi(ethylene glycol) methacrylate (DEGMMA) and methoxytri(ethylene glycol) methacrylate (TEGMMA) were carried out in THF at 40 degrees C in the presence of a free initiator, benzyl 2-bromoisobutyrate. The polymerizations were monitored by 1H NMR spectroscopy and gel permeation chromatography. The hairy hybrid nanoparticles were characterized by thermogravimetric analysis and scanning electron microscopy, and the thermoresponsive properties were investigated by variable temperature 1H NMR spectroscopy and dynamic light scattering. The cloud points of free poly(DEGMMA) and poly(TEGMMA) in water were around 25 and 48 degrees C, respectively. The thermo-induced phase transitions of polymer brushes on silica nanoparticles began at a lower temperature and continued over a broader range (4-10 degrees C) than those of free polymers in water (< 2 degrees C).  相似文献   

15.
16.
A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media.  相似文献   

17.
The modification of silicon oxide with poly(ethylene glycol) to effectively eliminate protein adsorption has proven to be technically challenging. In this paper, we demonstrate that surface-initiated atom transfer radical polymerization (SI-ATRP) of oligo(ethylene glycol) methyl methacrylate (OEGMA) successfully produces polymer coatings on silicon oxide that have excellent protein resistance in a biological milieu. The level of serum adsorption on these coatings is below the detection limit of ellipsometry. We also demonstrate a new soft lithography method via which SI-ATRP is integrated with microcontact printing to create micropatterns of poly(OEGMA) on glass that can spatially direct the adsorption of proteins on the bare regions of the substrate. This ensemble of methods will be useful in screening biological interactions where nonspecific binding must be suppressed to discern low probability binding events from a complex mixture and to pattern anchorage-dependent cells on glass and silicon oxide.  相似文献   

18.
To introduce high-density polymeric organic phase onto silica, initiator-modified silica was prepared and then surface-initiated atom transfer radical polymerization (ATRP) ("grafting-from" method) was carried out with octadecyl acrylate. The resultant polymer-grafted silica was characterized by diffuse reflectance infrared Fourier transform, suspension-state (1)H NMR, solid-state (13)C cross-polarization magic angle spinning nuclear magnetic resonance (CP-MAS-NMR), solid-state (29)Si-CP-MAS-NMR spectroscopies, elemental analysis and differential scanning calorimetry measurements. ATRP-based poly(octadecyl acrylate)-grafted silica (Sil-ODA(n)-1), was used as a stationary phase in high-performance liquid chromatography (HPLC) and the chromatographic behavior was evaluated by the retention studies of polycyclic aromatic hydrocarbons (PAHs) and aromatic positional isomers. Compared with previous poly(octadecyl acrylate)-grafted silica (Sil-ODA(n)), which was prepared by the "grafting-to" method, we have observed longer retention and greater selectivity for Sil-ODA(n)-1 towards PAHs event at higher temperature.  相似文献   

19.
Poly(ethylene oxide) (PEO) star polymer with a microgel core was prepared by atom transfer radical poylmerization (ATRP) of divinyl benzene (DVB) with mono‐2‐bromoisobutyryl PEO ester as a macroinitiator. Several factors, such as the feed ratio of DVB to the initiator, type of catalysts, and purity of DVB, play important roles during star formation. The crosslinked poly(divinyl benzene) (PDVB) core was further obtained by the hydrolysis of PEO star to remove PEO arms. Size exclusion chromatography (SEC) traces revealed the bare core has a broad molecular weight distribution. PEO–polystyrene (PS) heteroarm star polymer was synthesized through grafting PS from the core of PEO star by another ATRP of styrene (St) because of the presence of initiating groups in the core inherited from PEO star. Characterizations by SEC, 1H NMR, and DSC revealed the successful preparation of the target star copolymers. Scanning electron microscopy images suggested that PEO–PS heteroarm star can form spherical micelles in water/tetrahydrofuran mixture solvents, which further demonstrated the amphiphilic nature of the star polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2263–2271, 2004  相似文献   

20.
Valorization of poly(ethylene terephthalate) (PET) waste has been achieved using glycolysis. The resulting diols were employed for the synthesis of triblock copolymers by atom transfer radical polymerization using copper (I) bromide and (1,1,4,7,10,10)‐hexamethyltriethylenetetramine as catalyst system. Macroinitiator was obtained after depolymerization of PET waste followed by functionalization of the obtained glycolysate with 2‐bromoisobutyrate bromide. Polymerization of styrene (S) and glycidyl methacrylate (GMA) has been achieved leading to PS‐b‐PETG‐b‐PS and (PS‐stat‐PGMA)‐b‐PETG‐b‐(PS‐stat‐PGMA) triblock copolymers. Best results were obtained at 100 °C. At this temperature, termination reaction were negligible and the measured number‐average molar mass of the product increased linearly with monomer conversion in agreement with the theoretical Mn with low polydispersity products achieved. Polymers were also characterized by 1H NMR. This work presents a original valorization of PET waste as (PS‐stat‐PGMA)‐b‐PETG‐b‐(PS‐stat‐PGMA) copolymer could be used as heat curable coatings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 433–443, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号