首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent two‐component relativistic calculations, termed the Kramers‐restricted open‐shell HF (KROHF) method, is developed. The present KROHF method is defined as a relativistic analogue of ROHF using time‐reversal symmetry and quaternion algebra, based on the Kramers‐unrestricted HF (KUHF) theory reported in our previous study (Int. J. Quantum Chem., doi: 10.1002/qua.25356 ). As seen in the nonrelativistic ROHF theory, the ambiguity of the KROHF Fock operator gives physically meaningless spinor energies. To avoid this problem, the canonical parametrization of KROHF to satisfy Koopmans' theorem is also discussed based on the procedure proposed by Plakhutin et al. (J. Chem. Phys. 2006 , 125, 204110). Numerical assessments confirmed that KROHF using Plakhutin's canonicalization procedure correctly gives physical spinor energies within the frozen‐orbital approximation under spin–orbit interactions.  相似文献   

2.
We proposed the ab initio linear combination of Gaussian type orbital (LCGTO) generalized spin orbital GW (GSO–GW) method and calculated triangular hydrogen molecules as models of the noncolinear magnetic clusters. A remarkable improvement of ionized potentials (IPs) by the GW procedure for GHFS solutions is observed in comparison with calculational results by full CI. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 369–374, 2001  相似文献   

3.
4.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent, two‐component relativistic calculations, termed the Kramers‐unrestricted HF (KUHF) method, is developed. The present KUHF method, which is formulated as a relativistic counterpart of nonrelativistic UHF, is based on quaternion algebra and partly uses time‐reversal symmetry. The fundamental characteristics of KUHF are discussed in this study. From numerical assessments, it was revealed that KUHF gives a corresponding solution to nonrelativistic UHF; furthermore, KUHF properly describes spin‐orbit interactions. In addition, KUHF can improve the self‐consistent field convergence behavior in spin‐dependent calculations, for example, for f‐block elements.  相似文献   

5.
The local pair natural orbital approach, which has been combined with two post‐Hartree–Fock methods, CEPA‐1 and pCCSD‐1a, recently, is assessed for its applicability to large real‐world problems without abundant computing resources. Test cases are selected based on being representative for computational chemistry problems and availability of reliable reference data. Both methods show a good performance and can be applied easily to systems of up to 100 atoms when very accurate energies are sought after. A considerable demand for basis sets of good quality has been identified and practical guidelines to satisfy this are mapped out. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
This work presents exchange potentials for specific orbitals calculated by inverting Hartree–Fock wavefunctions. This was achieved by using a Depurated Inversion Method. The basic idea of the method relies on the substitution of Hartree–Fock orbitals and eigenvalues into the Kohn–Sham equation. Through inversion, the corresponding effective potentials were obtained. Further treatment of the inverted potential should be carried on. The depuration is a careful optimization which eliminates the poles and also ensures the fullfilment of the appropriate boundary conditions. The procedure developed here is not restricted to the ground state or to a nodeless orbital and is applicable to all kinds of atoms. As an example, exchange potentials for noble gases and term‐dependent orbitals of the lower configuration of Nitrogen are calculated. The method allows to reproduce the input energies and wavefunctions with a remarkable degree of accuracy.  相似文献   

7.
The generator coordinate Hartree–Fock (GCHF) method is employed as a criterion for the selection of a 18s12p Gaussian basis for the atoms Na–Ar. The role of the weight functions in the assessment of the numerical integration range of the GCHF equations is shown. The extended basis is then contracted to (10s6p) by a standard procedure and in combination with the previously contracted (7s5p) Gaussian basis for the atoms Li–Ne is enriched with polarization functions. This basis is tested for AlF, SiO, PN, BCl, and P2. The properties of interest were HF total energies, MP2 dipolar moments, bond distances, and dissociation energies. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 927–934, 1997  相似文献   

8.
The quasiparticle energy of the H2 molecule is calculated by using the GW method, in which the self‐energy operator fully depends on the frequency. The initial Green function G0 is constructed from the wave function obtained by the Hartree–Fock approximation (HFA) and local density approximation (LDA) in the framework of the density functional theory (DFT). From the results obtained we have shown that the wave function from the DFT–LDA is more effective than that from the HFA for G0. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 348–353, 2001  相似文献   

9.
We have implemented ab initio linear combinations of Gaussian‐type orbital calculations with generalized localized spin density approximation (GLSDA) for a dimer of equilateral H3 as a model of the noncollinear magnetic clusters. It has been found that the GLSDA solution with the three‐dimensional noncollinear spin structure is, contrary to prior band calculations by other groups, the ground state near the Oh conformation. Further computational results are compared to that of ab initio generalized Hartree–Fock. The difference between them and the influence of the correlation correction were discussed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

10.
In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics‐based force fields, although they cannot fully describe protein–ligand interactions. A noteworthy computational method in development involves large‐scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large‐scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange‐correlation functionals, and solvation effects) on the binding energies of the FK506‐binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2‐MP2/6‐31G(d), is suitable for evaluating the protein–ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure–activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein–ligand interaction distance. Our acceleration scheme, which uses FMO2‐HF/STO‐3G:MP2/6‐31G(d) at Rint = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
12.
13.
Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the atoms from B to Ne) for the first‐row atoms, generated with an improved generator coordinate Hartree–Fock method, were contracted and enriched with polarization functions. These basis sets were tested for B2, C2, BeO, CN, LiF, N2, CO, BF, NO+, O2, and F2. At the Hartree–Fock (HP), second‐order Møller–Plesset (MP2), fourth‐order Møller–Plesset (MP4), and density functional theory (DFT) levels, the dipole moments, bond lengths, and harmonic vibrational frequencies were studied, and at the MP2, MP4, and DFT levels, the dissociation energies were evaluated and compared with the corresponding experimental values and with values obtained using other contracted Gaussian basis sets and numerical HF calculations. For all diatomic molecules studied, the differences between our total energies, obtained with the largest contracted basis set [6s5p3d1f], and those calculated with the numerical HF methods were always less than 3.2 mhartree. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 15–23, 2000  相似文献   

14.
Using expansion formulas for the charge‐density over Slater‐type orbitals (STOs) obtained by the one of authors [I. I. Guseinov, J Mol Struct (Theochem) 1997, 417, 117] the multicenter molecular integrals with an arbitrary multielectron operator are expressed in terms of the overlap integrals with the same screening parameters of STOs and the basic multielectron two‐center Coulomb or hybrid integrals with the same operator. In the special case of two‐electron electron‐repulsion operator appearing in the Hartree–Fock–Roothaan (HFR) equations for molecules the new auxiliary functions are introduced by means of which basic two‐center Coulomb and hybrid integrals are expressed. Using recurrence relations for auxiliary functions the multicenter electron‐repulsion integrals are calculated for extremely large quantum numbers. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 117–125, 2001  相似文献   

15.
16.
An alternative method to solve the coupled‐perturbed Hartree–Fock (CPHF) equations for infinite quasi–one‐dimensional systems is presented. The new procedure follows a proposal made by Langhoff, Epstein, and Karplus to obtain perturbed wavefunctions free from arbitrary phase factors in each order of perturbation. It is based on the intermediate orthonormalization of the perturbed wavefunctions (which is different from the usual one) and a corresponding selection of the Lagrangian multipliers. In this way it is possible to incorporate the orthonormalization conditions into the set of CPHF equations. Moreover, a new, advantageous procedure to determine the derivatives of the wavefunction with respect to the quasimomentum k is presented. We report calculations of the dipole moment, the polarizability α, and the first hyperpolarizability β for different polymers (poly‐HF, poly‐H2O, trans‐polyacetylene, polyyne, and polycarbonitrile) for different frequencies. These results are extensively compared with oligomer calculations. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 251–268, 2003  相似文献   

17.
The title compound, N′‐benzylidene‐N‐[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐chloro‐acetic acid hydrazide, has been synthesized and characterized by elemental analysis, IR, 1H and 13C NMR, and X‐ray single crystal diffraction. The compound crystallizes in the orthorhombic space group P 21 21 21 with a = 5.8671 (3) Å, b = 17.7182 (9) Å, and c = 20.6373 (8) Å. Moreover, the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies, and gauge‐including atomic orbital 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6‐31G(d) and 6‐31G(d,p) basis sets. The results of the optimized molecular structure are exhibited and compared with the experimental X‐ray diffraction. Besides, molecular electrostatic potential, Frontier molecular orbitals, and thermodynamic properties of the title compound were determined at B3LYP/6‐31G(d) levels of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

18.
Novel inorganic–organic yolk–shell microspheres based on Preyssler‐type NaP5W30O11014? polyoxometalate and MIL‐101(Cr) metal–organic framework (P5W30/MIL‐101(Cr)) were synthesized by reaction of K12.5Na1.5[NaP5W30O110], Cr(NO3)3·9H2O and terephthalic acid under hydrothermal conditions at 200°C for 24 h. The as‐prepared yolk–shell microspheres were fully characterized using various techniques. All analyses confirmed the incorporation of the Preyssler‐type NaP5W30O11014? polyoxometalate into the three‐dimensional porous MIL‐101(Cr) metal–organic framework. The results revealed that P5W30/MIL‐101(Cr) demonstrated rapid adsorption of cationic methylene blue (MB) and rhodamine B (RhB) with ultrahigh efficiency and capacity, as well as achieving rapid and highly selective adsorption of MB from MB/MO (MO = methyl orange), MB/RhB and MB/RhB/MO mixtures. The P5W30/MIL‐101(Cr) adsorbent not only exhibited a high adsorption capacity of 212 mg g?1, but also could quickly remove 100% of MB from a dye solution of 50 mg l?1 within 8 min. The effects of some key parameters such as adsorbent dosage, initial dye concentration and initial pH on dye adsorption were investigated in detail. The equilibrium adsorption data were better fitted by the Langmuir isotherm. The adsorption kinetics was well modelled using a pseudo‐second‐order model. Also, the inorganic–organic hybrid yolk–shell microspheres could be easily separated from the reaction system and reused up to four times without any change in structure or adsorption ability. The stability and robustness of the adsorbent were confirmed using various techniques.  相似文献   

19.
An instability condition is derived for the Hartree–Fock solution so that it can be applied to the system in which the highest occupied and the lowest unoccupied bands cross at the in‐between point in the Brillouin zone. The instability check developed here is further applied to a metallic single‐walled carbon nanotube having the two‐crossing bands toward prediction of its instability. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 574–582, 2000  相似文献   

20.
The ground state calculations in the combined Hartree–Fock–Roothaan approach are performed for the neutral and the first 20 cationic members of the isoelectronic series of atoms from Be to Ne using noninteger n‐Slater type orbitals. For the total energies obtained, only a small deviation has been found. At the same time, the size of the present noninteger n‐Slater type orbitals is smaller than that of the usual extended integer n‐Slater functions in literature. All of the nonlinear parameters are fully optimized. The relationship between optimized parameters and atomic number Z is also investigated. For each atom, the total energies are given in tables. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号