首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new hemoglobin (Hb) and carbon nanotube (CNT) modified carbon paste electrode was fabricated by simply mixing the Hb, CNT with carbon powder and liquid paraffin homogeneously. To prevent the leakage of Hb from the electrode surface, a Nafion film was further applied on the surface of the Hb‐CNT composite paste electrode. The modified electrode was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Direct electrochemistry of hemoglobin in this paste electrode was easily achieved and a pair of well‐defined quasi‐reversible redox peaks of a heme Fe(III)/Fe(II) couple appeared with a formal potential (E0′) of ?0.441 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical behaviors of Hb in the composite electrode were carefully studied. The fabricated modified bioelectrode showed good electrocatalytic ability for reduction of H2O2 and trichloroacetic acid (TCA), which shows potential applications in third generation biosensors.  相似文献   

2.
A polymer film based on polymeric ionic liquid, which was poly(1‐vinyl‐3‐butylimidazolium chloride) (poly(ViBuIm+Cl?)for short), was firstly used as matrix to immobilize hemoglobin (Hb). FTIR and UV‐vis spectra demonstrated that the native structure of Hb was well preserved after entrapped into the polymer film. The Hb immobilized in the poly(ViBuIm+Cl?) film showed a fast direct electron transfer for the Hb‐FeIII/FeII redox couple. Based on the direct electron transfer of the immobilized Hb, polyvinyl alcohol (PVA)/Hb/poly(ViBuIm+Cl?)/GC electrode displayed good sensitivity and wide linear range for the detection of H2O2. The linear range of the PVA/Hb/poly(ViBuIm+Cl?)/GC electrode to H2O2 is from 3.5 to 224 μM with a limit of detection of 1.17 μM. Such an avenue, which integrated polymeric ionic liquid and redox protein via a simple method, may provide a novel and efficient platform for the fabrication of biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

3.
By using a 1‐butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the working electrode, graphene (GR) nanosheets and silver nanoparticles (Ag NPs) were step by step electrodeposited on the surface of the CILE with potentiostatic method. The fabricated Ag/GR/CILE was used as a new platform for protein electrochemistry and hemoglobin (Hb) was immobilized on its surface with chitosan (CTS) as film forming material. In 0.1 mol/L phosphate buffer solution, a pair of well‐defined and quasi‐reversible redox peaks appeared on the CTS/Hb/Ag/GR/CILE with a formal peak potential of ?0.202 V (vs. SCE) and a peak‐to‐peak separation (ΔEp) of 68 mV, which indicated that direct electrochemistry of Hb was realized on the modified electrode. The results could be attributed to the synergistic effects of Ag NPs and GR nanosheets on the electrode surface, which provided a specific three‐dimensional structure with high conductivity and good biocompatibility. The Hb modified electrode showed excellent electrocatalysis to the reduction of trichloroacetic acid in the concentration range from 0.8 to 22.0 mmol/L with a detection limit of 0.42 mmol/L (3σ). Moreover, the modified electrode exhibited favorable reproducibility, long term stability and accuracy, with potential applications in the third‐generation electrochemical biosensor.  相似文献   

4.
The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E 0' ) of Hb was –0.105 V versus SCE, the electron transfer rate constant was 4.66 s –1 . E 0′ of Hb at the modified electrode was linearly varied in a pH range of 5.0—8.0 with a slope of –49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an ex-cellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H 2 O 2 concentration in a range of 1.0×10 ?6 to 2.2×10 ?3 mol/L. The detection limit was 2.0×10 ?7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(K ma pp ) was 2.95 mmol/L.  相似文献   

5.
A novel nanocomposite integrating the good biocompatibility of polyacrylic resin nanoparticles (PAR) and the good conductivity of colloidal gold nanoparticles was proposed to construct the matrix for the immobilization of hemoglobin (Hb) on the surface of a glassy carbon electrode (GCE). UV‐vis spectra demonstrated that Hb preserved its native structure after being entrapped into the composite film. The direct electrochemistry of hemoglobin (Hb) in this nanocomposite films showed a pair of well‐defined and quasi‐reversible cyclic voltammetric peaks with a formal potential of ?0.307 mV and a constant electron transfer rate of 2.51±0.2 s?1. The resultant amperometric biosensor showed fast responses to the analytes with excellent detection limits of 0.2 µM for H2O2 and 0.89 µM for TCA (S/N=3), and high sensitivity of 1108.6 for H2O2 and 77.14 mA cm?2 M?1 for TCA, respectively. The linear current response was found in the range from 0.59 to 7.3 µM (R2=0.9996) for H2O2 and from 5 to 85 µM (R2=0.9996) for TCA, while the superior apparent Michaelis–Menten constant was 0.012 mM for H2O2 and 0.536 mM for TCA, respectively. Therefore, the PAR‐Au‐Hb nanocomposite as a novel matrix opens up a possibility for further study on the direct electrochemistry of other proteins.  相似文献   

6.
In this article we report on the fabrication of a carbon ionic liquid electrode (CILE) by using a room temperature ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) as binder. It was further modified by single‐walled carbon nanotubes (SWCNTs) to get a SWCNTs modified CILE denoted as SWCNTs/CILE. The redox protein of hemoglobin (Hb) was further immobilized on the surface of SWCNTs/CILE with the help of Nafion film. UV‐vis and FT‐IR spectra indicated that the immobilized Hb retained its native conformation in the composite film. The direct electrochemistry of Hb on the SWCNTs/CILE was carefully studied in pH 7.0 phosphate buffer solution (PBS). Cyclic voltammetric results indicated that a pair of well‐defined and quasireversible voltammetric peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential (E°') at ?0.306 V (vs. SCE). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the apparent heterogeneous electron transfer rate constant (ks) were calculated as 0.34, 0.989 and 0.538 s?1, respectively. The fabricated Hb modified electrode showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) in the concentration range from 20.0 to 150.0 mmol/L with the detection limit of 10.0 mmol/L (3σ).  相似文献   

7.
A facile phospholipid/room‐temperature ionic liquid (RTIL) composite material based on dimyristoylphosphatidylcholine (DMPC) and 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([bmim]PF6) was exploited as a new matrix for immobilizing protein. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to characterize this composite film. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV‐vis absorbance spectra showed that Hb still maintained its heme crevice integrity in this composite film. By virtue of the Hb/DMPC/[bmim]PF6 composite film‐modified glassy carbon electrode (GCE), a pair of well‐defined redox peaks of Hb was obtained through the direct electron transfer between protein and underlying GCE. Moreover, the reduction of O2 and H2O2 at the Hb/DMPC/[bmim]PF6 composite film‐modified GCE was dramatically enhanced.  相似文献   

8.
Novel porous Mn2O3 with good crystallinity was synthesized via hard-template method. Hb-Mn2O3 na-nocomposite was prepared and used for biosensor construction. The Hb-Mn2O3-Nafion modified electrode shows fast direct electron transfer and displays good electrocatalytic response to the reduction of H2O2. The response time is less than 5 s, the sensitivity is as high as 493 μA·L·mmol-1·cm-2 in a linear range of 1-100 μmol/L, and the detection limit is 0.16 μmol/L. This modified electrode also shows good stabil...  相似文献   

9.
碳糊电极上无机膜固载血红蛋白的直接电化学   总被引:12,自引:0,他引:12  
报道了用硅溶胶-凝胶(Sol-gel)膜将血红蛋白(Hb)固载于碳糊电极上的直接电化学行为.研究结果表明,Hb-Sol-gel修饰的碳糊电极在pH=7.0的缓冲溶液中于-0.275V(vs.Ag/AgCl)处有一对可逆的循环伏安氧化-还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.HbFe(Ⅲ)/Fe(Ⅱ)电对的式量电位在pH5.0~11.0范围内与溶液pH值呈线性关系,表明Hb的电化学还原很可能是一个质子伴随着一个电子的电极过程.FTIR光谱证实,Sol-gel膜对Hb的固载没有破坏其天然结构.Hb-Sol-gel修饰的碳糊电极能够催化还原H2O2,可望将其用于制作第三代生物传感器.  相似文献   

10.
In this paper NiMoO4 nanorods were synthesized and used to accelerate the direct electron transfer of hemoglobin (Hb). By using an ionic liquid (IL) 1‐butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE) as the basic electrode, NiMoO4 nanorods and Hb composite biomaterial was further cast on the surface of CILE and fixed by chitosan (CTS) to establish a modified electrode denoted as CTS/NiMoO4‐Hb/CILE. UV‐vis and FT‐IR spectroscopic results showed that Hb in the film retained its native structures without any conformational changes. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with a pair of well‐defined and quasi‐reversible redox voltammetric peaks appearing in phosphate buffer solution (PBS, pH 3.0), which was attributed to the direct electrochemistry of the electroactive center of Hb heme Fe(III)/Fe(II). The results were ascribed to the specific characteristic of NiMoO4 nanorods, which accelerated the direct electron transfer rate of Hb with the underlying CILE. The electrochemical parameters of Hb in the composite film were further carefully calculated with the results of the electron transfer number (n) as 1.08, the charge transfer coefficient (α) as 0.39 and the electron‐transfer rate constant (ks) as 0.82 s?1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid (TCA) in the concentration range from 0.2 to 26.0 mmol/L with a detection limit of 0.072 mmol/L (3σ), and H2O2 in the concentration range from 0.1 to 426.0 µmol/L with a detection limit of 3.16×10?8 mol/L (3σ).  相似文献   

11.
制备了离子液体[BMIM]PF6修饰碳糊电极(CILE), 并对其形貌和电化学行为进行了表征. 采用涂布法利用壳聚糖-皂土有机-无机复合膜将血红蛋白(Hb)固定于CILE电极表面, 利用紫外可见光谱、红外光谱和电化学方法等手段对包埋于膜内的Hb的性质进行了表征. 结果表明, Hb在薄膜内保持了其原始构象与生物活性, 循环伏安实验表明, 在pH=7.0的Britton-Robinson (B-R)缓冲液中, Hb表现出一对峰形良好的准可逆氧化还原峰, 为Hb Fe(III)/Fe(II)电对的特征峰, 对其直接电化学行为进行了研究, 求出式电位为-0.352 V(vs SCE), 电子转移数为0.885, 电荷传递系数为0.578, 表观异相电子转移速率常数为0.149 s-1.  相似文献   

12.
Direct electron transfer of myoglobin (Mb) was achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1‐butyl pyridinium hexaflourophosphate ([BuPy][PF6]) as binder for the first time. A pair of well‐defined, quasi‐reversible redox peaks was observed for Mb/CILE resulting from Mb redox of heme Fe(III)/Fe(II) redox couple in 0.1 M phosphate buffer solution (pH 7.0) with oxidation potential of ?0.277 V, reduction potential of ?0.388 V, the formal potential E°′ (E°′=(Epa+Epc)/2) at ?0.332 V and the peak‐to‐peak potential separation of 0.111 V at 0.5 V/s. The average surface coverage of the electroactive Mb immobilized on the electrode surface was calculated as 1.06±0.03×10?9 mol cm?2. Mb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards the reduction of H2O2. The cathodic peak current of Mb was linear to H2O2 concentration in the range from 6.0 μM to 160 μM with a detection limit of 2.0 μM (S/N=3). The apparent Michaelis–Menten constant (K and the electron transfer rate constant (ks) were estimated to be 140±1 μM and 2.8±0.1 s?1, respectively. The biosensor achieved the direct electrochemistry of Mb on CILE without the help of any supporting film or any electron mediator.  相似文献   

13.
In this paper a room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was used as binder for the construction of carbon ionic liquid electrode (CILE) and a new electrochemical biosensor was developed for determination of H2O2 by immobilization of hemoglobin (Hb) in the composite film of Nafion/nano‐CaCO3 on the surface of CILE. The Hb modified electrode showed a pair of well‐defined, quasi‐reversible redox peaks with Epa and Epc as ?0.265 V and ?0.470 V (vs. SCE). The formal potential (E°′) was got by the midpoint of Epa and Epc as ?0.368 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The peak to peak separation was 205 mV in pH 7.0 Britton–Robinson (B–R) buffer solution at the scan rate of 100 mV/s. The direct electrochemistry of Hb in the film was carefully investigated and the electrochemical parameters of Hb on the modified electrode were calculated as α=0.487 and ks=0.128 s?1. The Nafion/nano‐CaCO3/Hb film electrode showed good electrocatalysis to the reduction of H2O2 in the linear range from 8.0 to 240.0 μmol/L and the detection limit as 5.0 μmol/L (3σ). The apparent Michaelis–Menten constant (KMapp) was estimated to be 65.7 μmol/L. UV‐vis absorption spectroscopy and FT‐IR spectroscopy showed that Hb in the Nafion/nano‐CaCO3 composite film could retain its native structure.  相似文献   

14.
Multilayers of myoglobin (Mb) with ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM]BF4) was assembled on carbon ionic liquid electrode (CILE) based on the electrostatic attraction between the negatively charged Mb and the positively charged imidazolium ion of IL. The CILE was fabricated with 1‐ethyl‐3‐methylimidazolium ethylsulfate ([EMIM]EtOSO3) as the modifier, which exhibited imidazolium ion on the electrode surface. Then Mb molecules were assembled on the surface of CILE step‐by‐step to get a {IL/Mb}n multilayer film modified electrode. UV‐Vis adsorption and FT‐IR spectra indicated that Mb remained its native structure in the IL matrix. In deaerated phosphate buffer solution (pH 7.0) a pair of well‐defined quasi‐reversible redox peaks appeared with the apparent formal potential (E0′) as ‐0.212 V (vs. SCE), which was the characteristic of Mb heme Fe(III)/Fe(II) redox couples. The results indicated that the direct electron transfer of Mb was realized on the modified electrode. The {IL/Mb}n/CILE displayed excellent electrocatalytic ability to the trichloroacetic acid reduction in the concentration range from 2.0 to 22.0 mmol/L with the detection limit of 0.6 mmol/L (3σ). The proposed method provides a new platform to fabricate the third generation biosensor based on the self‐assembly of redox protein with ILs.  相似文献   

15.
Chuanyin Liu  Jiming Hu 《Electroanalysis》2008,20(10):1067-1072
Hemoglobin was entrapped in composite electrodeposited chitosan‐multiwall carbon nanotubes (MCNTs) film by assembling gold nanoparticles and hemoglobin step by step. In phosphate buffer solution (pH 7), a pair of well‐defined and quasireversible redox peaks appeared with formal potential at ?0.289 V and peak separation of 100 mV. The redox peaks respected for the direct electrochemistry of hemoglobin at the surface of chitosan‐MCNTs‐gold nanoparticles modified electrode. The parameters of experiments have also been optimized. The composite electrode showed excellent electrocatalysis to peroxide hydrogen and oxygen, the peak current was linearly proportional to H2O2 concentration in the range from 1×10?6 mol/L to 4.7×10?4 mol/L with a detection limit of 5.0×10?7 mol/L, and this biosensor exhibited high stability, good reproducibility and better selectivity. The biosensor showed a Michaelis–Menten kinetic response as H2O2 concentration is larger than 5.0×10?4 mol/L, the apparent Michaelis–Menten constant for hydrogen peroxide was calculated to be 1.61 μmol/L.  相似文献   

16.
A hydrogen peroxide (H2O2) biosensor based on the combination of Au@Ag core‐shell nanoparticles with a hemoglobin‐chitosan‐1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate (Hb‐CHIT‐BMIM×BF4) composite film was prepared. UV‐vis spectroscopy and transmission electron microscopy confirmed a core‐shell nanostructure of Au@Ag nanoparticle was successfully obtained. Cyclic voltammetric results showed a pair of well‐defined redox peaks appeared with the formal potential (EO′) of ‐0.301 V (versus Ag/AgCl reference electrode) and the peak‐to‐peak separation (ΔEp) was 84 mV in 0.1 M phosphate buffer solutions. Due to the synergetic effect of Au@Ag core‐shell nanoparticles and Hb‐CHIT‐BMIM×BF4, the biosensor exhibited good electrocatalytic activity to the reduction of H2O2 in a linear range from 1.0 × 10?6 to 1.0 × 10?3 M with a detection limit of 4 × 10?7 M (S/N = 3). The apparent Michaelis‐Menten constant (KM) was estimated to be 4.4 × 10?4 M, showing its high affinity. Thus, the study proved that the combination of Au@Ag core‐shell nanoparticles and Hb‐CHIT‐BMIM×BF4 is able to open up new opportunities for the design of enzymatic biosensors.  相似文献   

17.
大黄酸玻碳修饰电极对血红蛋白的催化还原   总被引:8,自引:0,他引:8  
在进行生物电化学分析的过程中 ,血红蛋白 ( Hemoglobin,简称 Hb)是研究的重点物质之一 .由于它的庞大结构及在固体电极上的过电位很大 ,使其在固体电极上的传递速率缓慢 .克服这个困难的方法之一通常是在固体电极上修饰一层物质 ,通常称之为媒介体 ,通过媒介体的传递使得血红蛋白的传递速率得到改善 ,过电位得到显著降低 .从报道的文章[1~ 10 ] 来看 ,这些媒介体大多采用具有氧化还原活性的染料 ,固定媒介体则采用吸附、聚合和电沉积的方法 .吸附是早期修饰电极常用的方法 ,这种Fig.1  The structure of rhein方法制备的电极往往寿命很…  相似文献   

18.
血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为   总被引:6,自引:0,他引:6  
利用吸附法将血红蛋白(Hb)固定在碳纳米管修饰碳糊电极表面,制成稳定的固载Hb碳纳米管修饰电极,研究了Hb在碳纳米管修饰电极上的直接电化学行为.固载Hb的碳纳米管修饰电极在pH=7.0的PBS(磷酸盐缓冲溶液)中有一对相当可逆的循环伏安氧化还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.式电位为-0.160 V(vs SCE),随扫描速度变化很小.电子转移数为1.021,近似为一个辅基发生电子转移.Hb在碳纳米管修饰电极表面的电子转移常数为0.0816 s-1,远大于亚甲蓝作媒介体时Hb的电子转移反应速率常数.应用于过氧化氢、三氯乙酸和硝基苯等的电催化还原,固定在碳纳米管修饰碳糊电极的血红蛋白表现出稳定且较高的催化活性.  相似文献   

19.
血红蛋白在裸银电极上的直接电化学及其分析应用   总被引:3,自引:0,他引:3  
报道了血红蛋白(Hb)在裸银电极上的电化学氧化还原行为。在+0.4~-0.2V(vs.SCE)电位范围内于pH=4.5的0.1mol/LNaAc-HAc底液中,血红蛋白产生一对灵敏的氧化还原峰。峰电位之差△E为0.25V(扫描速度20mV/s).动力学研究表明:电极反应的电子转移数n为0.94,表现电子传递速率常数Ks为0.032.连续电位扫描30min,峰电流变化分别为0.2μA(还原峰)和0.15μA(氧化峰).两峰与血红蛋白浓度在2×10-7~2×10-6mol/L和2×10-6~1.5×10-5mol/L范围内均呈良好线性关系,已应用于血红蛋白的分析测定。  相似文献   

20.
A biocomposite material of hyaluronic acid (HA) and room temperature ionic liquid, 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate (BMIMBF4) was fabricated and characterized by voltammetry and electrochemical impedance spectroscopy. Hemoglobin (Hb), as a model protein, was immobilized in this biocomposite on glassy carbon electrode to investigate its direct electrochemistry. A pair of well‐defined, quasireversible cyclic voltammetric peaks appeared with the formal potentials (E°′) at ?0.360 V (vs. SCE). The Hb modified electrode exhibited an excellent electrocatalytic activity to the reduction of H2O2 with a wide linear range, good selectivity, sensitivity and reproducibility, which had potential application to fabrication the third‐generation biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号