首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
2.
The structural and electronic properties of fluorene‐phenylene copolymer (FP)n, n = 1–4 were studied by means of quantum chemical calculations based on density functional theory (DFT) and time dependent density functional theory (TD‐DFT) using B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest singlet excited state. It was found that (FP)n is nonplanar in its ground state while the electronic excitations lead to planarity in its S1 state. Absorption and fluorescence energies were calculated using TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods. Vertical excitation energies and fluorescence energies were obtained by extrapolating these values to infinite chain length, resulting in extrapolated values for vertical excitation energy of 2.89 and 2.87 eV, respectively. The S1 ← S0 electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is distinguishing in terms of oscillator strength. Fluorescence energies of (FP)n calculated from TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods are 2.27 and 2.26 eV, respectively. Radiative lifetimes are predicted to be 0.55 and 0.51 ns for TD‐B3LYP/SVP and TD‐B3LYP/SVP+ calculations, respectively. These fundamental information are valuable data in designing and making of promising materials for LED materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
Bis(2‐methyl‐8‐quinolinolato)aluminum(III) hydroxide complex (AlMq2OH) is used in organic light‐emitting diodes (OLEDs) as an electron transport material and emitting layer. By means of ab initio Hartree–Fock (HF) and density functional theory (DFT) B3LYP methods, the structure of AlMq2OH was optimized. The frontier molecular orbital characteristics and energy levels of AlMq2OH have been analyzed systematically to study the electronic transition mechanism in AlMq2OH. For comparison and calibration, bis(8‐quinolinolato)aluminum(III) hydroxide complex (Alq2OH) has also been examined with these methods using the same basis sets. The lowest singlet excited state (S1) of AlMq2OH has been studied by the singles configuration interaction (CIS) method and time‐dependent DFT (TD‐DFT) using a hybrid functional, B3‐LYP, and the 6‐31G* basis set. The lowest singlet electronic transition (S0 → S1) of AlMq2OH is π → π* electronic transitions and primarily localized on the different quinolate ligands. The emission of AlMq2OH is due to the electron transitions from a phenoxide donor to a pyridyl acceptor from another quinolate ligand including C → C and O → N transference. Two possible electron transfer pathways are presented, one by carbon, oxygen, and nitrogen atoms and the other via metal cation Al3+. The comparison between the CIS‐optimized excited‐state structure with the HF ground‐state structure indicates that the geometric shift is mainly confined to the one quinolate and these changes can be easily understood in terms of the nodal patterns of the highest occupied and lowest unoccupied molecular orbitals. On the basis of the CIS‐optimized structure of the excited state, TD‐B3‐LYP calculations predict an emission wavelength of 499.78 nm. An absorption wavelength at 380.79 nm on the optimized structure of B3LYP/6‐31G* was predicted. They are comparable to AlMq2OH 485 and 390 nm observed experimentally for photoluminescence and UV‐vis absorption spectra of AlMq2OH solid thin film on quartz, respectively. Lending theoretical corroboration to recent experimental observations and supposition, the reasons for the blue‐shift of AlMq2OH were revealed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

4.
The geometries, energies, and electronic properties of a series of phosphorescent Pt(II) complexes including FPt, CFPt, COFPt, and NFPt have been characterized within density functional theory DFT calculations which can reproduce and rationalize experimental results. The properties of excited‐states of the Pt(II) complexes were characterized by configuration interaction with singles (CIS) method. The ground‐ and excited‐state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. In addition, we also have performed a triplet UB3LYP optimization for complex FPt and compared it with CIS method in the emission properties. The datum (562.52 nm) of emission wavelength for complex FPt, which were computed based on the triplet UB3LYP optimization excited‐state geometry, is not agreement with the experiment value (500 nm). The absorption and phosphorescence wavelengths were computed based on the optimized ground‐ and excited‐state geometries, respectively, by the time‐dependent density functional theory (TD‐DFT) methods. The results revealed that the nature of the substituent at the phenylpyridine ligand can influence the distributions of HOMO and LUMO and their energies. Moreover, the auxiliary ligand pyridyltetrazole can make the molecular structure present a solid geometry. In addition, the charge transport quality has been estimated approximately by the predicted reorganization energy (λ). Our result also indicates that the substitute groups and different auxiliary ligand not only change the nature of transition but also affect the rate and balance of charge transfer. By summarizing the results, we can conclude that the NFPt is good OLED materials with a solid geometry and a balanced charge transfer rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
The electronic and geometrical properties of distyrylbenzene (DSB) are investigated by using chemistry theoretical calculation methods. Specifically, the excited state properties are studied by performing ab initio correlation interaction singlet (CIS) and time‐dependent density functional theory; the ground state and Raman activities are computed by density functional theory with the B3LYP method. Eight conformers of distyrylbenzene are found and they are derived from three isomers which are cis, cis‐, cis, trans‐, and trans, trans‐, respectively. The relative energy shows that each isomer of three types is separated with a large energy barrier, but a small energy difference of each conformer is found if they are in the same type. The transition state also shows the barrier between conformers is lower than isomers. The computed excited transition energies using ZINDO/S based on the optimized geometries at a DFT/B3LYP level with 6–31+G show an excellent agreement with experimental absorption spectra.  相似文献   

6.
Core‐level excitations are generated by absorption of high‐energy radiation such as X‐rays. To describe these energetically high‐lying excited states theoretically, we have implemented a variant of the algebraic‐diagrammatic construction scheme of second‐order ADC(2) by applying the core‐valence separation (CVS) approximation to the ADC(2) working equations. Besides excitation energies, the CVS‐ADC(2) method also provides access to properties of core‐excited states, thereby allowing for the calculation of X‐ray absorption spectra. To demonstrate the potential of our implementation of CVS‐ADC(2), we have chosen medium‐sized molecules as examples that have either biological importance or find application in organic electronics. The calculated results of CVS‐ADC(2) are compared with standard TD‐DFT/B3LYP values and experimental data. In particular, the extended variant, CVS‐ADC(2)‐x, provides the most accurate results, and the agreement between the calculated values and experiment is remarkable. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
运用密度泛函理论(DFT)B3LYP方法和abinitioHF单激发组态相互作用(CIS)法分别优化了有机金属配合物8-羟基喹啉铍(BeQ2)及其3种衍生物分子的基态及最低激发单重态几何结构.系统分析了分子结构、前线分子轨道特征和能级分布规律以探索电子跃迁机理.应用含时密度泛函理论(TD-DFT)计算分子的电子光谱,揭示了BeQ2及其衍生物的发光源于配体中π→π*电子跃迁,指出通过配体修饰可以有效地影响配合物前线分子轨道分布,调整发光波段,并有效提高电荷转移量.  相似文献   

8.
A systematic study of the proton transfer in the 7-azaindole–water clusters (7-AI(H2O)n; n=1–4) in both the ground and first excited singlet electronic states is undertaken. DFT(B3LYP) calculations for the ground electronic state shows that the more stable geometry of the initial normal tautomer presents a cyclic set of hydrogen bonds that links the two nitrogen atoms of the base across the waters. For the n=4 cluster the water molecules adopt a double ring structure so that two cycles of hydrogen bonds are found there. From this structure full tautomerization implies only one transition state so that a concerted but non-synchronous process is predicted by our theoretical calculations. This behavior is found both in the ground and the excited states where CIS geometry optimizations and TD(B3LYP) energy calculations are performed. The difference between both states is the height of the energy barrier that is much lower in the excited state. Another clear difference between both electronic states is that full tautomerization is an endergonic process in the ground state whereas it is clearly exergonic (then favorable) in the excited state. This is so because electronic excitation implies a charge transfer from the five-member cycle to the six-member one of 7-azaindole so that the proton transfer from the pyrrolic side to the pyridinic one is favored. These results clearly indicate that full tautomerization will not likely occur in the ground state but it will be quite easy (and fast) in the excited state. Reaction is already feasible in the S1 1:1 complex but it is faster in the 1:2 complex. However the reaction slows again for the 1:3 complex and, finally, reaches a new maximum for the largest cluster studied here, the n=4 case. These results, which are in agreement with experimental data, are explained in terms of the number of hydrogen bonds that are involved in the transfer. The proton transfer through a ring formed by the substrate and two water molecules is found to be the more efficient one, at least in this system.  相似文献   

9.
B(C2H5)2q及其衍生物电子光谱性质的密度泛函理论研究   总被引:9,自引:0,他引:9  
采用密度泛函理论(DFT)B3LYP、abinitioHF和单激发组态相互作用(CIS)等方法分别优化了有机配合物B(C2H5)2q及其衍生物的基态及最低激发单重态几何结构.用含时密度泛函理论(TD-DFT)对B(C2H5)2q及其衍生物的电子光谱进行了研究.发现该类物质是配体发光配合物,其发光源于8-羟基喹啉配体内π*  相似文献   

10.
The ground state and the excited states of benzene, pyrimidine, and pyrazine have been examined by using the symmetry adapted cluster-configuration interaction (SAC-CI) method. Detailed characterizations and the structures of the absorption peaks in the vacuum ultraviolet (VUV), low energy electron impact (LEEI), and electron energy loss (EEL) spectra were theoretically clarified by calculating the excitation energy and the oscillator strength for each excited state. We show that SAC-CI has the power to well reproduce the electronic excitation spectra (VUV, LEEI, and EEL) simultaneously to an accuracy for both the singlet and the triplet excited states originated from the low-lying pi --> pi*, n --> pi*, pi --> sigma* and n --> sigma* excited states of the titled compounds. The present results are compared with those of the previous theoretical studies by methods, such as EOM-CCSD(T), STEOM-CCSD, CASPT2 and TD-B3LYP, etc.  相似文献   

11.
12.
Structure, photoabsorption and excited states of two representative conformations obtained from molecular dynamics (MD) simulations of a doubly-linked porphyrin-fullerene dyad DHD6ee are studied by using both DFT and wavefunction based methods. Charge transfer from the donor (porphyrin) to the acceptor (fullerene) and the relaxation of the excited state are of special interest. The results obtained with LDA, GGA, and hybrid functionals (SVWN, PBE, and B3LYP, respectively) are analyzed with emphasis on the performance of used functionals as well as from the point of view of their comparison with wavefunction based methods (CCS, CIS(D), and CC2). Characteristics of the MD structures are retained in DFT optimization. The relative orientation of porphyrin and fullerene is significantly influencing the MO energies, the charge transfer (CT) in the ground state of the dyad and the excitation of ground state CT complex (g-CTC). At the same time, the excitation to the locally excited state of porphyrin is only little influenced by the orientation or cc distance. TD-DFT underestimates the excitation energy of the CT state, however for some cases (with relatively short donor-acceptor separations), the use of a hybrid functional like B3LYP alleviates the problem. Wavefunction based methods and CC2 in particular appear to overestimate the CT excitation energies but the inclusion of proper solvation models can significantly improve the results.  相似文献   

13.
14.
15.
16.
The proton‐transfer reaction in a model aromatic Schiff base, salicylidene methylamine (SMA), in the ground and in the lowest electronically‐excited singlet states, is theoretically analyzed with the aid of second‐order approximate coupled‐cluster model CC2, time‐dependent density functional theory (TD‐DFT) using the Becke, three‐parameter Lee–Yang–Parr (B3LYP) functional, and complete active space perturbation theory CASPT2 electronic structure methods. Computed vertical‐absorption spectra for the stable ground‐state isomers of SMA fully confirm the photochromism of SMA. The potential‐energy profiles of the ground and the lowest excited singlet state are calculated and four photophysically relevant isomeric forms of SMA; α, β, γ, and δ are discussed. The calculations indicate two S1/S0 conical intersections which provide non‐adiabatic gates for a radiationless decay to the ground state. The photophysical scheme which emerges from the theoretical study is related to recent experimental results obtained for SMA and its derivatives in the low‐temperature argon matrices (J. Grzegorzek, A. Filarowski, Z. Mielke, Phys. Chem. Chem. Phys. 2011 , 13, 16596–16605). Our results suggest that aromatic Schiff bases are potential candidates for optically driven molecular switches.  相似文献   

17.
Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.  相似文献   

18.
The ability of conjugated polymers to function as electronic materials is dependent on the efficient transport of excitons along the polymer chain. Generally, the photophysics of the chromophore monomer dictate the excited state behavior of the corresponding conjugated polymers. Different molecular structures are examined to study the role of excited state lifetimes and molecular conformations on energy transfer. The incorporation of rigid, three‐dimensional scaffolds, such as iptycenes and cyclophanes, can encourage an oblique packing of the chromophore units of a conjugated polymer, thus allowing the formation of electronically‐coupled aggregates that retain high quantum yields of emission. Rigid iptycene scaffolds also act as excellent structural directors that encourage complete solvation of PPEs in a liquid crystal (LC) solvent. LC‐PPE mixtures display both an enhanced conformational alignment of polymer chains and extended effective conjugation lengths relative to isotropic solutions, which leads to enhanced energy transfer. Facile exciton migration in poly(p‐phenylene ethynylene)s (PPEs) allows energy absorbed over large areas to be funneled into traps created by the binding of analytes, resulting in signal amplification in sensory devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

19.
Theoretical investigations were performed to study the phenomena of ground and electronic excited state proton transfer in the isolated and monohydrated forms of guanine. Ground and transition state geometries were optimized at both the B3LYP/6-311++G(d,p) and HF/6-311G(d,p) levels. The geometries of tautomers including those of transition states corresponding to the proton transfer from the keto to the enol form of guanine were also optimized in the lowest singlet pipi* excited state using the configuration interaction singles (CIS) method and the 6-311G(d,p) basis set. The time-dependent density function theory method augmented with the B3LYP functional (TD-B3LYP) and the 6-311++G(d,p) basis set was used to compute vertical transition energies using the B3LYP/6-311++G(d,p) geometries. The TD-B3LYP/6-311++G(d,p) calculations were also performed using the CIS/6-311G(d,p) geometries to predict the adiabatic transition energies of different tautomers and the excited state proton transfer barrier heights of guanine tautomerization. The effect of the bulk aqueous environment was considered using the polarizable continuum model (PCM). The harmonic vibrational frequency calculations were performed to ascertain the nature of potential energy surfaces. The excited state geometries including that of transition states were found to be largely nonplanar. The nonplanar fragment was mostly localized in the six-membered ring. Geometries of the hydrated transition states in the ground and lowest singlet pipi* excited states were found to be zwitterionic in which the water molecule is in the form of hydronium cation (H3O(+)) and guanine is in the anionic form, except for the N9H form in the excited state where water molecule is in the hydroxyl anionic form (OH(-)) and the guanine is in the cationic form. It was found that proton transfer is characterized by a high barrier height both in the gas phase and in the bulk water solution. The explicit inclusion of a water molecule in the proton transfer reaction path reduces the barrier height drastically. The excited state barrier height was generally found to be increased as compared to that in the ground state. On the basis of the current theoretical calculation it appears that the singlet electronic excitation of guanine may not facilitate the excited state proton transfer corresponding to the tautomerization of the keto to the enol form.  相似文献   

20.
Spectroscopic properties of a ground state nonbonded porphine-buckminsterfullerene (H2P...C60) complex are studied in several different relative orientations of C60 with respect to the porphine plane by using the density functional (DFT) and time-dependent density functional (TDDFT) theories. The geometries and electronic structures of the ground states are optimized with the B3LYP and PBE functionals and a SVP basis set. Excitation energies and oscillator strengths are obtained from the TDDFT calculations. The relative orientation of C60 is found to affect the equilibrium distance between H2P and C60 especially in the case of the PBE functional. The excitation energies of different H2P...C60 complexes are found to be practically the same for the same excitations when the B3LYP functional is used but to differ notably when PBE is used in calculations. Existence of the states related to a photoinduced electron transfer within a porphyrin-fullerene dyad is also studied. All calculations predict a formation of an excited charge-transfer complex state, a locally excited donor (porphine) state, as well as a locally excited acceptor (fullerene) state in the investigated H2P...C60 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号