首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high water solubility of poly (vinyl alcohol) (PVA) is one of the challenging problems in its application. In order to rectify this problem, PVA needs to be crosslinked. Freeze‐thawing in solid state as a novel physical crosslinking method was employed for enhancement the stability of PVA nanoparticles in aqueous solutions during this study. PVA nanoparticles were successfully prepared by electrospraying and electrospray conditions were optimized in the view points of polymer concentration and solvent system. The morphology of nanoparticles was tailored from collapsed particles and mixture of particles/fibers to spherical particle by manipulating of polymer solution concentration and solvent system. After preparation of PVA nanoparticles in optimum condition, they were frozen at ?20°C and subsequently thawed at 25°C for different cycles of 1, 2, and 3. Field‐emission scanning electron microscope (FE‐SEM), Fourier‐transform infrared (FTIR), X‐ray diffraction (XRD), differential scanning calorimeter (DSC), and biodegradation were used to evaluate the effect of freeze‐thawing on properties of PVA nanoparticles. FE‐SEM showed the spherical morphology of the PVA nanoparticles with sizes ranging from 200 to 300 nm. The FTIR spectroscopy indicated that the crystallinity of PVA nanoparticles increases after freeze‐thawing process. Moreover, by increasing the number of cycles, degree of crystallinity of nanoparticles increases. The XRD and DSC analysis of PVA nanoparticles again demonstrated the increasing of crystallinity of nanoparticles after freeze‐thawing process. The biodegradation behavior of PVA nanoparticles after freeze‐thawing exhibited the decreasing of degradation rate by increasing the number of cycles. Our overall results present a solvent‐less and safe method for crosslinking of PVA nanoparticles in solid state, which make it suitable for biomedical applications.  相似文献   

2.
A facile method to prepare shape memory polymers crosslinked by SiO2 is described. A series of biodegradable shape memory networks were obtained through thiol‐ene reaction triggered by UV irradiation between surface‐thiol‐modified SiO2 nanoparticles and end‐acrylate poly (ε‐caprolactone) (PCL). The highly selective thiol‐ene reaction ensured a uniform distribution of PCL chains between crosslinkers, contributing well‐defined network architecture with enhanced mechanical and shape‐memory properties. Thiol‐functionalized silica nanoparticle was characterized by using FTIR and XPS analysis, and 1H NMR spectra was used to confirm the successful modification of terminal hydroxyl group of PCL diol. Surface‐modified silica particles were found well dispersible in acrylate‐capped PCL supported by SEM. Thermal and crystalline behaviors of the obtained polymers were analyzed by DSC and XRD, and DMA measurement proved good mechanical property. The shape memory behavior and tensile strength was somewhat tunable by the length of PCL. Acceptably, sample SiO2‐SMP2k presented 99% recovery ratio and 97% shape fixity, and its relatively high tensile strength showed an attractive potential for biomedical application. Finally, a possible molecular mechanism accounting for the shape memory property was illustrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 692–701  相似文献   

3.
《中国化学会会志》2017,64(7):813-821
Zinc oxide nanoparticles (ZnO NPs ) were prepared by a simple, convenient, and cost‐effective wet chemical method using the biopolymer starch. The prepared ZnO NPs were characterized by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray (EDX ), Fourier transform infrared (FT‐IR ), and UV ‐visible spectroscopic techniques. The average crystallite size calculated from XRD data using the Debye–Scherer equation was found to be 15 nm. The electrochemical behavior of caffeine (CAF ) was studied using a glassy carbon electrode (GCE ) modified with zinc oxide nanoparticles by cyclic voltammetry (CV ) and differential pulse voltammetry (DPV ). Compared to unmodified GCE , ZnO NPs‐ modified GCE (ZnO NPs MGCE ) exhibited excellent electrocatalytic activity towards CAF oxidation, which was evident from the increase in the peak current and decrease in the peak potential. Electrochemical impedance study suggested that the charge‐transfer capacity of GCE was significantly enhanced by ZnO NPs . The linear response of the peak current on the concentrations of CAF was in the range 2–100 μM . The detection limit was found to be 0.038 μM. The proposed sensor was successfully employed for the determination of CAF in commercial beverage samples.  相似文献   

4.
Chitosan, a natural biopolymer, is used for drug delivery application. But its potential application is limited by its low solubility in aqueous media. The present study was designed to prepare carboxymethyl chitosan (CMC), a water soluble derivative of chitosan, and evaluate the prospective of crosslinked CMC‐Montmorillonite (MMT) nanoparticles for controlled delivery of isoniazid. The nanoparticles were characterized by Fourier Transmission Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), and Transmission emission microscopy (TEM). The effects of MMT and glutaraldehyde on nanoparticles were assessed with regard to encapsulation efficiency, percentage swelling degree, and cumulative release. Percentage swelling degree and cumulative release were studied in pH medium 1.2 and 7.4 for 6 h. The cumulative release was studied by UV‐visible spectrophotometer. Cell viability study was performed by MTT assay analysis. FTIR and NMR study indicated the successful preparation of CMC. FTIR study confirmed the interaction of MMT with CMC. The exfoliation of MMT layers and molecular level dispersion of isoniazid in CMC was examined by XRD and TEM. SEM study showed that the surface of the CMC‐MMT nanoparticles was smooth compared with those of CMC nanoparticles. Swelling and release of isoniazid from the nanoparticles increased with the decrease in the MMT and glutaraldehyde content. The percentage swelling degree and cumulative release was more in pH 1.2. Cell viability study revealed that CMC was not cytotoxic, and the nanoparticles containing MMT was less cytotoxic than those of MMT free nanoparticles. CMC‐MMT nanoparticles can be exploited as potential drug carrier for controlled release applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We have successfully prepared biocompatible and biodegradable hollow microspheres using carboxyl‐functionalized polystyrene particles as core template and the chitosan cross‐linked with glutaraldehyde as the shell. The monodisperse carboxyl‐functionalized polystyrene particles were made by emulsifier‐free emulsion polymerization. The structure, morphology, and constitution of the carboxyl‐functionalized polystyrene particles were characterized by FTIR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). The structure, morphology, and formation process of the hollow cross‐linked chitosan microspheres were characterized by FTIR, SEM, and TEM. The results revealed that the latex particles were removed by exposed to solvent and the microspheres exhibited the hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross‐linking on the surface of the carboxyl‐functionalized polystyrene particles and then removing off the cores of particles. Moreover, with the increase of carboxyl‐functionalization degree at the surface of latexes and the increase of cross‐linking period, the thicker and firmer monodisperse hollow microspheres were obtained. In addition, a water‐soluble drug, salicylic acid, encapsulated in the microcapsules slowly released at pH 1.2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 228–237, 2008  相似文献   

6.
N‐Decanoyl‐L ‐alanine (DA) was mixed with either colorless 4,4′‐bipyridine (BP) or various derivatives such as chromogenic oligo(p‐phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt‐type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two‐component mixtures could be modulated by variation of the position of the ′′N′′ atom of the end pyridyl groups in OPVs. The presence of acid–base interactions in the self‐assembly of these two‐component systems leading to gelation was probed in detail by using stoichiometry‐dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature‐dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J‐type aggregation mode of these gelator molecules during the sol‐to‐gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X‐ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two‐component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid‐phase behavior of such two‐component mixtures (acid/base=2:1) varied significantly upon changing the proton‐acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.  相似文献   

7.
Direct‐methanol fuel cells are proton‐exchange fuel cell in which methanol is used as the fuel. The important advantage of these fuel cells is the simplicity of transport and storage of methanol. In this study, methanol fuel cell electrocatalysts including graphene quantum dots (GQDs), functionalized multi‐walled carbon nanotubes (f‐MWCNTs) and GQDs/f‐MWCNTs composite were synthesized. The structures of synthesized electrocatalysts were highlighted by scanning electron microscope (SEM), raman spectroscopy, UV–vis spectroscopy, fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and x‐ray diffraction (XRD) method. After that, the effective surface areas (ESA) of GQDs, f‐MWCNTs and GQDs/f‐MWCNTs were calculated. Finally, GQDs/f‐MWCNTs composite modified glassy carbon electrode (GQDs/f‐MWCNTs/GCE) showed highest current signals for methanol oxidation than those of comparable GQDs/GCE and f‐MWCNTs/GCE.  相似文献   

8.
ZnO nanoparticles were successfully synthesized using a microwave method, whose surface was modified with {4-[(E)-2-(furan-2-yl)ethenyl]pyridin-1-ium-1-yl}acetate as a capping agent (1 and 3%). Their structural properties were investigated using FTIR, XRD, SEM, EDS, and UV–visible spectroscopy. XRD confirmed the Wurtzite structure for all compounds, a size of 30.6 nm for uncapped and 22.9 nm for 3% dye-capped nanoparticles were calculated from Scherer's equation. Hexagonal wurtzite shape of nanoparticles can be clearly seen in the SEM images. The DFT calculations were carried out using quantum espresso. These dye-capped ZnO nanoparticles were proved to be potential antibacterial agents, the minimum concentrations of dye-capped ZnO nanoparticles that inhibit the growth of bacteria are 1.5 mg/mL for Escherichia coli and 0.78 mg/mL for Bacillus subtilis, which are much lower than those of uncapped ZnO. The bioactivity data suggest these organic–inorganic hybrid nanoparticles emerged as a new class of antibacterial agents.  相似文献   

9.
A simple and green approach for the synthesis of well‐stabilized gold nanoparticles (AuNPs) using gum Acacia (GA) is presented here. The gum acacia acts as the reductant and stabilizer. The synthesized gold nanoparticles were characterized by using ultraviolet visible (UV‐Vis), fourier transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques. The UV‐Vis study revealed a distinct surface plasmon resonance at 520 – 550 nm, due to the formation of AuNPs. FTIR analysis showed the evidence that –OH groups present in the gum matrix were responsible in reducing the tetra chloroauric acid into AuNPs. XRD studies confirmed the formation of well crystalline nanoparticles with fcc structure and the particle size ranges from 4 – 29 nm, as indicated by TEM analysis. The synthesized gold nanoparticles exhibited homogeneous catalytic activity. The two model reactions studied were the reduction of p‐nitro phenol and the reduction of hexacyanoferrate (III) by borohydride ions. Both the reactions were monitored by UV‐Vis spectroscopy. The kinetic investigations were carried out for the AuNPs‐catalyzed reactions at different temperatures and different amount of catalyst.  相似文献   

10.
In this research, preparation of the magnetic nanoparticle, coating by a silica shell using (3‐aminopropyl) triethoxysilane and synthesis of a novel sulfonic acid‐substituted imidazolium‐based ionic liquid onto the surface of these particles via a multi‐component reaction, is described. The functionalized nanoparticles was loaded by Ni nanoparticles and characterized by means of techniques such as XRD, FTIR, SEM, EDX, TEM, TGA and ICP‐OES. The nanostructures have spherical shapes that ranged in size from 80 to 100 nm. The catalytic activity of these nanoparticles was tested in aerobic oxidation of primary alcohols that showed good performance in the wide range of primary alcohols in water at mild reaction conditions. As a second step of this work, the tandem oxidative synthesis of alkylacrylonitriles and bisindolylmethanes were investigated using primary alcohols under oxidation conditions. This catalyst system can be recovered using external magnet and reused for five consecutive cycles without significantly less of its activity.  相似文献   

11.
A facile one‐pot synthesis of highly water‐dispersible size‐tunable magnetite (Fe3O4) nanocrystal clusters (MNCs) end‐functionalized with amino or carboxyl groups by a modified solvothermal reduction reaction has been developed. Dopamine and 3,4‐dihydroxyhydroxycinnamic acid were used for the first time as both a surfactant and interparticle linker in a polylol process for economical and environment‐friendly purposes. Morphology, chemical composition, and magnetic properties of the prepared particles were investigated by several methods, including FESEM, TEM, XRD, XPS, Raman, FTIR, TGA, zeta potential, and VSM. The sizes of the particles could be easily tuned over a wide range from 175 to 500 nm by varying the surfactant concentration. Moreover, ethylene glycol/diethylene glycol (EG/DEG) solvent mixtures with different ratios could be used as reductants to obtain the particles with smaller sizes. The XRD data demonstrated that the surfactants restrained the crystal growth of the grains. The nanoparticles showed superior magnetic properties and high colloidal stability in water. The cytotoxicity results indicated the feasibility of using the synthesized nanocrystals in biology‐related fields. To estimate the applicability of the obtained MNCs in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. This novel strategy would simplify the reaction protocol and improve the efficiency of materials functionalization, thus offering new potential applications in biotechnology and organocatalysis.  相似文献   

12.
《Electroanalysis》2006,18(23):2290-2296
Carbon powder has been functionalized with 2‐methoxy‐4‐nitrophenyl groups by the reduction of 2‐methoxy‐4‐nitrobenzenediazonium‐1,5‐naphthalenedisulfonate salt in presence of hypophosporous acid as a reducing agent. This provides an easy and inexpensive methodology to modify the carbon particle surface. This derivatization is carried out in the presence of 2‐methoxy‐4‐nitrobenzenediazonium 1,5‐naphthalenedisulfonate salt along with the carbon powder and hypophosporous acid. The electrochemical behavior of the resulting 2‐methoxy‐4‐nitrophenyl functionalized carbon powder was characterized by immobilizing it onto basal plane pyrolytic graphite (bppg) electrode and studying its voltammetric behavior. The surface morphology of derivatized carbon powder has been examined by SEM studies which revealed that the size of the functionalized carbon particles are larger than bare carbon particles The effect of pH on peak potentials, scan rate and stability of the functionalized carbon particles has revealed that they are surface bound species.  相似文献   

13.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

14.
The precursor of ZnO was prepared by precipitation and ZnO nanoparticles were obtained by calcination afterwards. Poly(styrene) (PSt) was grafted onto the ZnO nanoparticles in a non‐aqueous suspension to reduce the aggregation among nanoparticles and to improve the compatibility between nanoparticles and the organic matter. The obtained samples were characterized by X‐ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT‐IR), zeta potential measurement, lipophilic degree (LD) test, photocatalytic experiments, sedimentation test, and contact angle measurement. The LD of composite particles after a high‐temperature treatment was stable. The photoluminescence of PSt‐grafted ZnO nanoparticles was observed by naked eyes and was recorded using a digital camera. The ZnO nanoparticles were used to reinforce poly(vinylidene fluoride) (PVDF) films and the mechanical and electric properties of the films were also measured. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A series of functionalized porphyrin molecules containing electron‐rich alkynes, synthesized by means of the Sonogashira coupling reaction were further modified by reacting the ethynyl groups with click reagent through a formal [2+2] click reaction. The photophysical and electrochemical properties of the porphyrin derivatives were studied by UV/Vis spectroscopy and cyclic voltammetry. We show that the optoelectronic properties are affected by the click reagent groups and central metal ions. The functionalized porphyrin molecules show strong charge‐transfer (CT) bands in the visible region (near‐IR region) and potent redox activities. Through a phase‐exchange self‐assembly method, the highly organized morphologies were observed by scanning electron microscopy (SEM). The functionalized porphyrin molecules represent an interesting set of candidates for optoelectronic device components. The effect of the metal ions or click reagent groups on the self‐assembly properties were also studied by the UV/Vis spectroscopic titration experiments.  相似文献   

16.
In the work, 4‐mercaptophenylboronic acid (4‐MPBA)‐functionalized gold nanoparticles were synthesized via a facile approach. At first, gold nanoparticles (about 50 nm) were prepared by a simple and convenient hydrothermal method based on a polyol process. Then, gold nanoparticles were modified with 4‐MPBA by the well‐known reaction of Au with the thiol groups. The MPBA‐functionalized gold nanoparticles were characterized by Fourier transform infrared spectra and UV/Vis adsorption spectra. Due to the fact that the boronic acid group on the surface of 4‐MPBA‐modified gold particles can form tight yet reversible covalent bonds with glycopeptides containing cis‐1,2‐diols groups, the MPBA‐modified gold nanoparticles were successfully applied to selective enrichment of glycopeptides. Isolation and enrichment of glycopeptides in a standard protein (asialofetuin and horseradish peroxidase) digestion and a complex sample were performed using MPBA‐modified gold nanoparticles, followed by matrix‐assisted laser desorption/ionization quadruple ion trap time‐of‐flight (MALDI‐QIT‐TOF) mass spectrometric analysis. The experimental results demonstrated that MPBA‐modified gold nanoparticles synthesized by the facile approach have the powerful potential for selective enrichment of glyciopeptides, and can be an alternative tool in glycoproteomics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, a highly dispersed graphene oxide (GO) was successfully functionalized with 3‐mercaptopropyltrimethoxysilane (MPTS) molecule by silanization method. The chemically generated GO and MPTS functionalized GO (MPTS‐GO) were structurally characterized by thermogravimetric analysis (TGA), X‐ray diffraction analysis (XRD), scanning electron microscope (SEM), energy dispersive X‐ray (EDAX), fourier transform infrared spectroscopy (FT‐IR) and ultraviolet visible spectroscopy (UV‐Vis) techniques. The MPTS‐GO is highly suspensable in water. The thermal and conductivity results for MPTS‐GO are significantly increased compared to GO. Moreover, glassy carbon electrode modified with MPTS‐GO hybrid (MPTS‐GO/GCE) was prepared by casting of the MPTS‐GO solution on GCE. The MPTS‐GO/GCE showed an excellent electrocatalytic activity towards methionine (Met). This was understood from the observed less positive oxidation potential and higher oxidation current when compared to bare GC electrode. The MPTS‐GO has excellent electrocatalytic activity, making it an ideal candidate for sensor applications.  相似文献   

18.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Micron‐sized monodisperse superparamagnetic polyglycidyl methacrylate (PGMA) particles with functional amino groups were prepared by a process involving: (1) preparation of parent monodisperse PGMA particles by the dispersion polymerization method, (2) chemical modification of the PGMA particles with ethylenediamine (EDA) to yield amino groups, and (3) impregnation of iron ions (Fe2+ and Fe3+) inside the particles and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O4) nanoparticles within the polymer particles. The resultant magnetic PGMA particles with amino groups were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffractometry (XRD), and vibrating sample magnetometry (VSM). SEM showed that the magnetic particles had an average size of 2.6 μm and were highly monodisperse. TEM demonstrated that the magnetite nanoparticles distributed evenly within the polymer particles. The existence of amino groups in the magnetic polymer particles was confirmed by FTIR. XRD indicated that the magnetic nanoparticles within the polymer were pure Fe3O4 with a spinel structure. VSM results showed that the magnetic polymer particles were superparamagnetic, and saturation magnetization was found to be 16.3 emu/g. The Fe3O4 content of the magnetic particles was 24.3% based on total weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3433–3439, 2005  相似文献   

20.
This paper introduces a kind of ZnO ultrafine particles modified with silica and trimethyl siloxane (TMS). Thus zinc carbonate hydroxide (ZCH) as the precursor of ZnO was synthesized using chemical precipitation method, and the precursor was modified in situ with silica and TMS. The modified ZnO ultrafine particles were obtained after calcinating the modified precursors. The surface properties of the modified ZnO ultrafine particles were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectra (XPS), scanning electron microscope (SEM), and transmission electron microscopy (TEM). The effects of the modifiers on the photocatalytic activity and UV shielding ability of ZnO ultrafine particles were also investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号