首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eighteen novel 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,3,4‐oxadiazole derivatives and two acylhydrazone intermediate compounds were synthesized by various pathways starting from 1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐formhydrazide ( 1 ). All products were identified by spectroscopic analysis, and 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐5‐benzalthio‐1,3,4‐oxadiazole was further validated by X‐ray crystallography. Results from primary antibacterial activity tests indicated that most of the compounds were effective against E. coli, P. aeruginosa, B. subtilis and S. aureus.  相似文献   

2.
The title molecule, N‐[4‐(3‐Methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐N′‐pyridin‐3ylmethylene‐ hydrazine (C20 H20 N4 S1), was characterized by 1H‐NMR, 13C‐NMR, IR, UV‐visible, and X‐ray determination. In addition to the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies and gauge including atomic orbital 1H‐ and 13C‐NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock and density functional method (B3LYP) with 6‐31G(d, p) basis set. The calculated results show that optimized geometries can well reproduce the crystal structural parameters. By using time‐dependent density functional theory method, electronic absorption spectrum of the title compound has been predicted. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
The title molecule, 3‐{[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐hydrazono}‐1,3‐dihydro‐indol‐2‐one (C22H20N4O1S1), was prepared and characterized by 1H NMR, 13C NMR, IR, UV–visible, and single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group P21 with a = 8.3401(5), b = 5.6976(3), c = 20.8155(14) Å, and β = 95.144(5)°. Molecular geometry from X‐ray experiment and vibrational frequencies of the title compound in the ground state has been calculated using the Hartree–Fock with 6‐31G(d, p) and density functional method (B3LYP) with 6‐31G(d, p) and 6‐311G(d, p) basis sets, and compared with the experimental data. The calculated results show that optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies values show good agreement with experimental data. Density functional theory calculations of the title compound and thermodynamic properties were performed at B3LYP/6‐31G(d, p) level of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

4.
A series of 2‐substituted phenoxy‐N‐(4‐substituted phenyl‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazole‐2‐yl)acetamide derivatives 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h , 8i , 8j , 8k , 8l , 8m , 8n , 8o , 8p , 8q , 8r , 8s , 8t was synthesized by the reaction of phenoxyacetyl chloride 7 with intermediate 4‐substituted phenyl‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazol‐2‐amine 5 . Their structures were confirmed by 1H NMR, 13C NMR, MS, IR, and elemental analyses. The synthesized compounds were also screened for their antimicrobial activity against three types of plant fungi (Gibberella zeae , Phytophthora infestans , and Paralepetopsis sasakii ) and two kinds of bacteria [Xanthomonas oryzae pv. oryzae (Xoo ) and Xanthomonas axonopodis pv. citri (Xac )] showing promising results. In particular, 8b , 8f , 8g , and 8h exhibited excellent antibacterial activity against Xoo , with 50% effective concentration (EC50) values of 35.2, 80.1, 62.5, and 82.1 µg/mL, respectively, which are superior to the commercial antibacterial agent bismerthiazol (89.9 µg/mL). The preliminary structure–activity relationship studies of these compounds are also briefly described.  相似文献   

5.
New 4‐aryl‐5‐(1‐phenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazol‐3‐thiones 3 have been synthesized by the intramolecular cyclization of 4‐aryl‐1‐(1‐phenyl‐5‐methyl‐1,2,4‐triazol‐4‐formyl)thiosemicarbazides 2 with an 8% NaOH solution, and then 3 reacted with ω‐bromo‐ω‐(1H‐1,2,4‐triazol‐1‐yl)acetophenone to afford ω‐[4‐aryl‐5‐(1‐phenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazol‐3‐thio]‐ω‐(1H‐1,2,4‐triazol‐1‐yl)‐acetophenones 4 . The preliminary biological test showed that the representative compounds possess some anti fungal activities.  相似文献   

6.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

7.
A series of novel 5‐(2,3,4,5‐tetrahydro‐1H‐chromeno[2,3‐d]pyrimidin‐5‐yl)pyrimidione derivatives have been synthesized from substituted salicylaldehydes and barbituric acid or 2‐thiobarbituric acid in water catalyzed by phase transfer catalysis of triethylbenzyl ammonium chloride (TEBA). Elemental analysis, IR, 1H NMR, and 13C NMR elucidated the structures of all the newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds have been investigated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. These newly synthesized derivatives exhibited significant in vitro antibacterial activity.  相似文献   

8.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

9.
Some new (3,5‐aryl/methyl‐1H‐pyrazol‐1‐yl)‐(5‐arylamino‐2H‐1,2,3‐triazol‐4‐yl)methanones were synthesized and characterized by 1HNMR, 13C NMR, MS, IR spectra data and elemental analyses or high resolution mass spectra (HRMS). During the procedure, Dimroth rearrangement was used in this synthesis.  相似文献   

10.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

11.
The new N‐salicylideneheteroarenamines 1 – 4 were prepared by reacting the biologically relevant 3‐hydroxy‐4‐pyridinecarboxaldehyde ( 5 ) with 1H‐imidazol‐1‐amine ( 6 ), 1H‐pyrazol‐1‐amine ( 7 ), 1H‐1,2,4‐triazol‐1‐amine ( 8 ), and 1H‐1,3,4‐triazol‐1‐amine ( 9 ). Solution 1H‐, 13C‐, and 15N‐NMR were used to establish that the hydroxyimino form A is the predominant tautomer. A combination of 13C‐ and 15N‐CPMAS‐NMR with X‐ray crystallographic studies confirms that the same form is present in the solid state. The stabilities and H‐bond geometries of the different forms, tautomers and rotamers, are discussed by using B3LYP/6‐31G** calculations.  相似文献   

12.
13.
The condensation of 4‐amino‐5‐mercapto‐3‐(2‐phenylquinolin‐4‐yl)/3‐(1‐p‐chlorophenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazoles 1a‐b with chloroacetaldehyde 2a‐b , ω‐bromo‐ω‐(1H‐1,2,4‐triazol‐1‐yl)acetophenone 3a‐b , chloranil 4a‐b , 2‐bromocyclohexanone 5a‐b , 2,4′‐dibromoacetophenone 6a‐b and 2‐bromo‐6′‐methoxy‐2′‐acetonaphthone 7a‐b are described. The structures of the compounds synthesized were confirmed by elemental analyses, IR, 1H NMR and mass spectra. The antibacterial activities were also evaluated.  相似文献   

14.
5‐(Tetrazol‐1‐yl)‐2H‐tetrazole ( 1 ), or 1,5′‐bistetrazole, was synthesized by the cyclization of 5‐amino‐1H‐tetrazole, sodium azide and triethyl orthoformate in glacial acetic acid. A derivative of 1 , 2‐methyl‐5‐(tetrazol‐1‐yl)tetrazole ( 2 ) can be obtained by this method starting from 5‐amino‐2‐methyl‐tetrazole. Furthermore, selected salts of 1 with nitrogen‐rich and metal (alkali and transition metal) cations, including hydroxylammonium ( 4 ), triaminoguanidinium ( 5 ), copper(I) ( 8 ) and silver ( 9 ), as well as copper(II) complexes of both 1 and 2 were prepared. An intensive characterization of the compounds is given, including vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, DSC and single‐crystal X‐ray diffraction. Their sensitivities towards physical stimuli (impact, friction, electrostatic) were determined according to Bundesamt für Materialforschung (BAM) standard methods. Energetic performance (detonation velocity, pressure, etc.) parameters were calculated with the EXPLO5 program, based on predicted heats of formation derived from enthalpies computed at the CBS‐4M level of theory and utilizing the atomization energy method. From the analytical and calculated data, their potential as energetic materials in different applications was evaluated and discussed.  相似文献   

15.
From the reaction of 1H‐imidazole ( 1a ), 4,5‐dichloro‐1H‐imidazole ( 1b ), 1H‐benzimidazole ( 1c ), 1‐methyl‐1H‐imidazole ( 1d ), and 1‐methyl‐1H‐benzimidazole ( 1f ) with methyl 4‐(bromomethyl)benzoate ( 2 ), symmetrically and nonsymmetrically 4‐(methoxycarbonyl)benzyl‐substituted N‐heterocyclic carbene (NHC) precursors, 3a – 3f , were synthesized. These NHC precursors were then reacted with silver(I) acetate (AgOAc) to yield the NHC–silver acetate complexes (acetato‐κO){1,3‐bis[4‐(methoxycarbonyl)benzyl]imidazol‐2‐ylidene}silver ( 4a ), (acetato‐κO){4,5‐dichloro‐1,3‐bis[4‐(methoxycarbonyl)benzyl]‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4b ), (acetato‐κO){1,3‐bis[4‐(methoxycarbonyl)benzyl]‐2,3‐dihydro‐1H‐benzimidazol‐2‐yl}silver ( 4c ), (acetato‐κO){1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4d ), (acetato‐κO){4,5‐dichloro‐1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4e ), and (acetato‐κO){1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐benzimidazol‐2‐yl}silver ( 4f ), respectively. The three NHC–AgOAc complexes 4a, 4c , and 4d were characterized by single‐crystal X‐ray diffraction. All compounds studied in this work were preliminarily screened for their antimicrobial activities in vitro against Gram‐positive bacteria Staphylococcus aureus, and Gram‐negative bacteria Escherichia coli using the qualitative disk‐diffusion method. All NHC–AgOAc complexes exhibited weak‐to‐medium antibacterial activity with areas of clearance ranging from 4 to 7 mm at the highest amount used, while the NHC precursors showed significantly lower activity. In addition, NHC–AgOAc complexes 4a and 4b , and 4d – 4f exhibited in preliminary cytotoxicity tests on the human renal‐cancer cell line Caki‐1 medium‐to‐high cytotoxicities with IC50 values ranging from 3.3±0.4 to 68.3±1 μM .  相似文献   

16.
In order to search for novel agrochemicals with high activity and low toxicity, a series of phosphonate derivatives containing 1,2,3-triazole and thiazole rings were designed and synthesized using 2-chloro-5-(chloromethyl)- thiazole as the starting material. Their structures were confirmed by IR, ^1H NMR, ^31p NMR, EI-MS or ESI-MS and elemental analyses. The crystal structure of 7a was determined by single crystal X-ray diffraction. Preliminary bioassays indicated that most of the target compounds did not display insecticidal activities, but a fraction of them possessed herbicidal and fungicidal activities to some extent.  相似文献   

17.
合成了10个未见文献报道的1-(5-(2-氯苯基)-3-(2,4-二氯苯基)-4,5-二氢-N-吡唑肟酯类衍生物,并经过元素分析、HRMS、核磁共振氢谱对其结构进行了表征。对新合成的化合物进行了初步抗Bacillus subtilis, Staphylococcus aureus, Escherichia coli 和 Pseudomonas aeruginosa生物活性测试,结果表明:化合物7c 和7f对供试病菌具有较好的体外杀灭活性,其MIC值达到1.562 μg/mL;化合物7c ,7d和7f 具有中等的抑制DNA回旋酶活性(IC50 = 1.6~2.5 µg/mL)。在生物活性结果的基础上对系列化合物的构效关系进行了初步的探讨。  相似文献   

18.
The synthesis and crystal structures of two dinuclear titanocene hydride complexes are reported. Both complexes, namely bis(η5‐(di‐para‐tolylmethyl)cyclopentadienyl)titanium hydride dimer, [(η5‐C20H19)2Ti(μ‐H)]2 ( 2a ), and bis(η5‐2‐adamantylcyclopentadienyl)‐titanium hydride dimer, [(η5‐C15H19)2Ti(μ‐H)]2 ( 2b ), are formed via activation of molecular hydrogen by the corresponding bis(η51‐pentafulvene)titanium complexes 1a and 1b at ambient temperatures and pressures in high yields. The hydride complexes 2a and 2b exhibit planar [Ti2H2] cores and, as a result of the heterolytic cleavage of molecular hydrogen, substituted Cp Ligands were formed during the reaction.  相似文献   

19.
The title compound, N′‐benzylidene‐N‐[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐chloro‐acetic acid hydrazide, has been synthesized and characterized by elemental analysis, IR, 1H and 13C NMR, and X‐ray single crystal diffraction. The compound crystallizes in the orthorhombic space group P 21 21 21 with a = 5.8671 (3) Å, b = 17.7182 (9) Å, and c = 20.6373 (8) Å. Moreover, the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies, and gauge‐including atomic orbital 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6‐31G(d) and 6‐31G(d,p) basis sets. The results of the optimized molecular structure are exhibited and compared with the experimental X‐ray diffraction. Besides, molecular electrostatic potential, Frontier molecular orbitals, and thermodynamic properties of the title compound were determined at B3LYP/6‐31G(d) levels of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
《中国化学会会志》2018,65(8):932-939
1‐(3‐amino‐4‐thia‐1,2‐diazaspiro[4.11]hexadec‐2‐en‐1‐yl)ethan‐1‐one was synthesized and experimentally characterized by using FT‐IR, 1H NMR, 13C NMR, and UV–Vis spectroscopy. The structure of the compound was confirmed by single‐crystal X‐ray diffraction. In the crystal structure, the molecules are linked by pairs of N‐H⋯N hydrogen bonds, forming centrosymmetric dimers with the graph‐set motif. The water molecule also plays an important role in the stabilization of the crystal structure, bridging the dimers to form a two‐dimensional supramolecular network. The molecular geometry, frontier molecular orbitals, vibrational frequencies, electronic properties, and molecular electrostatic potential were calculated using density functional theory (DFT) with the B3LYP/6‐311G(d,p) basis set. Geometric parameters, vibrational assignments, and electronic properties such as calculated energies, excitation energies, and oscillator strengths were compared with the experimental data, and it was seen that the theoretical results support the experimental parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号