首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ionic liquid (IL) 1‐(3‐chloro‐2‐hydroxy‐propyl)‐3‐methylimidazolium trifluoroacetate was used as the modifier for the preparation of the modified carbon paste electrode (CPE). The IL‐CPE showed excellent electrocatalytic activity towards the oxidation of guanosine‐5′‐triphosphate (5′‐GTP) in a pH 5.0 Britton‐Robinson buffer solution. Due to the presence of high conductive IL on the electrode surface, the electrooxidation of 5′‐GTP was greatly promoted with a single well‐defined irreversible oxidation peak appeared. The electrode reaction was an adsorption‐controlled process and the electrochemical parameters of 5′‐GTP on IL‐CPE were calculated with the electron transfer coefficient (α) as 0.44, the electron transfer number (n) as 1.99, the apparent heterogeneous electron transfer rate constant (ks) as 2.21 × 10?9 s?1 and the surface coverage (ΓT) as 1.53 × 10?10 mol cm?2. Under the selected conditions a linear calibration curve between the oxidation peak currents and 5′‐GTP concentration was obtained in the range from 2.0 to 1000.0 μmol L?1 with the detection limit as 0.049 μmol L?1 (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the 5‘‐GTP detection without the interferences of coexisting substances and the practical application was checked by measurements of the artificial samples.  相似文献   

2.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

3.
In this paper a new electrochemical method based on the ionic liquid modified carbon paste electrode (IL‐CPE) was proposed for the determination of adenosine‐5′‐triphosphate (ATP) in a pH 4.5 Britton‐Robinson (B‐R) buffer solution. IL‐CPE was prepared by using 1‐butyl‐3‐methylimidazolium trifluoroacetate (BMIMCF3COO) as the modifier. Cyclic voltammetry was used to investigate the electrochemical behaviors of ATP on the IL‐CPE, and the results indicated that IL‐CPE exhibited strong electrocatalytic ability to promote the oxidation of ATP with a single well‐defined irreversible adsorption‐controlled oxidation peak appeared. The electrochemical reaction parameters of ATP were calculated with the results of the electron transfer coefficient (α) as 0.40, the electron transfer number (n) as 1.17, the apparent heterogeneous electron transfer rate constant (ks) as 3.66 × 10‐6 s‐1 and the surface coverage (Γτ) as 2.48 × 10‐9 mol cm‐2. Under the selected conditions the proposed IL‐CPE showed good performances to the ATP detection in the concentration range from 0.1 to 1000.0 μmol L‐1 with the detection limit as 3.65 × 10‐8 mol L‐1 (3σ) by differential pulse voltammetry. The method showed good selectivity to the ATP detection without the interferences of coexisting substances and was successfully applied to the ATP injection samples detection with satisfactory results.  相似文献   

4.
The electrochemical behaviour of hydrazine at a 1‐benzyl‐4‐ferrocenyl‐1H‐[1,2,3]‐triazole‐triazole/carbon nanotube modified glassy carbon electrode has been studied. The modified electrode shows an excellent electrocatalytic activity for the oxidation of hydrazine and accelerates electron transfer rate. The electrocatalytic current increases linearly with hydrazine concentration in the range 0.5–700.0 μm and the detection limit for hydrazine was 33.0 ± 2.0 nm . The diffusion coefficient (D = 2.5 ± 0.1 × 10?5 cm2 s?1) and kinetic parameters such as the electron transfer coefficient, (α = 0.52) and the heterogeneous rate constant (k′ = 5.5 ± 0.1 × 10?3 cm s?1) for hydrazine were determined using electrochemical approaches. Finally, the method was employed for the determination of hydrazine in water samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The products of the gas‐phase reactions of OH radicals with 1‐pentene and 2‐methyl‐2‐propen‐1‐ol (221MPO) at T=298±2 K and atmospheric pressure were investigated by using a 4500 L atmospheric simulation chamber that was built especially for this work. The molar yield of butyraldehyde was 0.74±0.12 mol for the reaction of 1‐pentene. This work provides the first product molar yield determination of formaldehyde (0.82±0.12 mol), 1‐hydroxypropan‐2‐one (0.84±0.13 mol), and methacrolein (0.078±0.012 mol) from the reaction of 221MPO with OH radicals. The mechanism of this reaction is discussed in relation to the experimental results. Additionally, taking into consideration the complex mechanism, the rate coefficients of the reactions of OH with formaldehyde, 1‐hydroxypropan‐2‐one, and methacrolein were derived at atmospheric pressure and T=298±2 K.; the obtained values were (8.9±1.6)×10?12, (2.4±1.4)×10?12, and (22.9±2.3)×10?12 cm3 molecule?1 s?1, respectively.  相似文献   

6.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

7.
This study describes a fast and simple methodology for the preparation of Cerium (III) Hexacyanoferrate (II) (CeHCF) nanoparticles (NPs). The NPs were characterized by fourier transform infrared (FTIR), x‐ray diffraction (XRD), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The CeHCF cyclic voltammogram indicate a well‐defined redox pair assigned as Fe2+/Fe3+ in the presence of cerium (III), with a formal potential of Eθ′=0.29 V (v=100 mV s?1, KNO3; 1.0 mol/L, pH 7.0). The carbon paste electrode modified with CeHCF (CeHCF‐CPE) was applied to the catalytic electrooxidation of dopamine applying Differential Pulse Voltammetry (DPV). DPV showed linear response at two concentration ranges, from 9.0×10?7 to 8.0×10?6 and 9.0×10?6 to 1.0×10?4 mol/L, with an LOD of 1.9×10?7 and 1.0×10?5 mol/L, respectively. The CeHCF‐CPE exhibited selectivity against substances commonly found in biological samples, with redox potentials close to that of dopamine, such as urea and ascorbic acid (AA). Subsequently the CeHCF‐CPE was successfully applied to the detection of dopamine in simulated urine samples, with recovery percentages ranging between 99 and 103%.  相似文献   

8.
《Electroanalysis》2006,18(3):291-297
Selected from a series of structurally related heteroaromatic thiols, a newly synthesized reagent 2‐amino‐5‐mercapto‐[1,3,4] triazole (MATZ) was used to fabricate self‐assembled monolayers (SAMs) on gold electrode for the first time. The MATZ/Au SAMs was characterized by electrochemical methods and scanning electronic microscopy (SEM). In 0.04 mol/L Britton–Robinson buffer solution (pH 5), the electrochemical behavior of dopamine showed a quasireversible process at the MATZ/Au SAMs with an electrode kinetic constant 0.1049 cm/s. However, the electrochemical reaction of uric acid at the SAMs electrode showed an irreversible oxidation process, the charge‐transfer kinetics of uric acid was promoted by the SAMs. By Osteryoung square‐wave voltammetry (OSWV), the simultaneous determination of dopamine and uric acid can be accomplished with an oxidation peak separation of 0.24 V, the peak current of dopamine and uric acid were linearly to its concentration in the range of 2.5×10?6–5.0×10?4 mol/L for dopamine and 1×10?6–1×10?4 mol/L for uric acid with a detection limit of 8.0×10?7 mol/L for dopamine and 7.0×10?7 mol/L for uric acid. The MATZ/Au SAMs electrode was used to detect the content of uric acid in real urine and serum sample with satisfactory results.  相似文献   

9.
《Electroanalysis》2004,16(12):1014-1018
The transfer of sodium cation facilitated by (anthraquinone‐1‐yloxy) methane‐15‐crown‐5 (L) has been investigated at the water/1,2‐dichloroethane microinterface supported at the tip of a micropipette. The diffusion coefficient of (anthraquinone‐1‐yloxy) methane‐15‐crown‐5 obtained was (3.42±0.20)×10?6 cm2 s?1. The steady‐state voltammograms were observed for forward and backward scans due to sodium ion transfer facilitated by L with 1 : 1 stoichiometry. The mechanism corresponded to an interfacial complexation (TIC) and interfacial dissociation (TID) process. The association constant was calculated to be log βo=11.08±0.03 in the DCE phase. The association constant of other alkali metals (Li+, K+, Rb+) were also obtained.  相似文献   

10.
This work reports the novel application of carbon‐coated magnetite nanoparticles (mNPs@C) as catalytic nanomaterial included in a composite electrode material (mNPs@C/CPE) taking advantages of their intrinsic peroxidase‐like activity. The nanostructured electrochemical transducer reveals an enhancement of the charge transfer for redox processes involving hydrogen peroxide. Likewise, mNPs@C/CPE demonstrated to be highly selective even at elevated concentrations of ascorbic acid and uric acid, the usual interferents of blood glucose analysis. Upon these remarkable results, the composite matrix was further modified by the addition of glucose oxidase as biocatalyst, in order to obtain a biosensing strategy (GOx/mNPs@C/CPE) with enhanced properties for the electrochemical detection of glucose. GOx/mNPs@C/CPE exhibit a linear range up to 7.5×10?3 mol L?1 glucose, comprising the entirely physiological range and incipient pathological values. The average sensitivity obtained at ?0.100 V was (1.62±0.05)×105 nA L mol?1 (R2=0.9992), the detection limit was 2.0×10?6 M while the quantification limit was 6.1×10?6 mol L?1. The nanostructured biosensor demonstrated to have an excellent performance for glucose detection in human blood serum even for pathological values.  相似文献   

11.
A surface‐renewable tris(1, 10‐phenanthroline‐5, 6‐dione) iron (D) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD‐modified electrode presented pH‐dependent voltammetric behavior, and its peak currents were diffusion‐controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0.4). In the presence of iodate, dear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 × 10?6–1 × 10?2 mol/L, 7.448 μA·L/ mmol, 1.2 × 10?6 mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface‐renewal by simple mechanical polishing.  相似文献   

12.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

13.
A new sol‐gel carbon composite electrode using hexacyanoferrate (HCF)‐Th(IV) ion pair as a suitable modifier is fabricated in the present study. The Th(IV)‐HCF‐sol‐gel carbon composite electrode (THCF‐CCE) has been prepared by mixing methyl trimethoxysilan (MTMOS) sol‐gel precursor and carbon powder with ion pair and then to fix in a plastic tube. Cyclic voltammetry and chronoamperometry were employed to study the electrochemical and electrocatalytic properties of proposed electrode. The apparent charge transfer rate constant, ks, and transfer coefficient, α, for electron transfer between ion‐pair and sol‐gel CPE were calculated as 3.10 ± 0.10 s?1 and 0.52, respectively. The THCF‐CCE showed a significant electrocatalytic activity towards oxidation of ascorbic acid (AA) and dopamine (DA) in 0.1 M acidic phosphate buffer solutions (pH 3) containing KCl as a supporting electrolyte. The mean value of the diffusion coefficients for ascorbic acid and dopamine were found 4.12 × 10?5 and 4.43 × 10?5 (cm2s?1), respectively. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed sensor. The resulting peaks from the electrocatalytic oxidation of AA and DA were well resolved with good sensitivity. A linear response was observed for AA and DA in the concentration range of 1 × 10?5 to 3 × 10?3 M and 4 × 10?6 to 2.2 × 10?4 M, respectively.  相似文献   

14.
Relative rate coefficients for the reactions of OH with 3‐methyl‐2‐cyclohexen‐1‐one and 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one have been determined at 298 K and atmospheric pressure by the relative rate technique. OH radicals were generated by the photolysis of methyl nitrite in synthetic air mixtures containing ppm levels of nitric oxide together with the test and reference substrates. The concentrations of the test and reference substrates were followed by gas chromatography. Based on the value k(OH + cyclohexene) = (6.77 ± 1.35) × 10?11 cm3 molecule?1 s?1, rate coefficients for k(OH + 3‐methyl‐2‐cyclohexen‐1‐one) = (3.1 ± 1.0) × 10?11 and k(OH + 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one) = (2.4 ± 0.7) × 10?11 cm3 molecule?1 s?1 were determined. To test the system we also measured k(OH + isoprene) = (1.11 ± 0.23) × 10?10 cm3 molecule?1 s?1, relative to the value k(OH + (E)‐2‐butene) = (6.4 ± 1.28) × 10?11 cm3 molecule?1 s?1. The results are discussed in terms of structure–activity relationships, and the reactivities of cyclic ketones formed in the photo‐oxidation of monoterpene are estimated. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 7–11, 2002  相似文献   

15.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

16.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

17.
A kinetics study of the thermolysis of a series of hexasubstituted‐4,5‐dihydro‐3H‐pyrazoles (pyrazolines 1a: 3,3,4,4‐tetramethyl‐5‐phenyl‐5‐acetoxy; 1b: cis‐3,5‐diphenyl‐3,3,4‐trimethyl‐5‐acetoxy; 1c: cis‐3,5‐diphenyl‐3,4,4‐trimethyl‐5‐methoxy; 1d: 3,3,5‐triphenyl‐4,4‐dimethyl‐5‐acetoxy), which produced the corresponding hexasubstituted cyclopropanes 2a–d in quantitative yields was carried out. The first order rate constants (k1) for thermal decomposition and activation parameters were determined. The relative reactivity series was found to be 1d >> 1b ∼ 1c > 1a. The activation parameters for thermolysis were found to be: for 1a ΔH‡ = 39.8 kcal/mol, ΔS‡ = 14 eu, k150° = 6.8 × 10−5 s−1; for 1b ΔH‡ = 33.5 kcal/mol, ΔS ‡ = 0.2 eu, k150° = 1.7 × 10−4s−1; for 1c ΔH‡ = 32.7 kcal/mol, ΔS‡ = −1.8 eu, k150° = 1.2 × 10−4s−1; for 1d ΔH‡ = 30.1 kcal/mol, ΔS‡ = −1.6 eu, k150° = 8.8 × 10−3s−1. The effect of variation of C3 substituents on the activation parameters for thermolysis paralleled the trend reported for acyclic analogs. The results are consistent with the formation of a (singlet) 1,3‐diradical intermediate with subsequent closure to yield the cyclopropanes. The mechanism of diradical formation appears to involve N2‐C3 bond cleavage as the rate determining step rather than simultaneous two bond scission. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:299–302, 2000  相似文献   

18.
A new, simple, rapid, sensitive, efficient and low‐cost spectrophotometric procedure for the determination of gold was developed. The method is based on the reaction of [AuCl4]? with 2‐[2‐(4‐dimethylaminophenyl)‐vinyl]‐1,3,3‐trimethyl‐3H‐indolium reagent to form a colored ion associate extractable by various organic solvents. The molar absorptivity of the ion associates is in the range (5.7–9.2) × 104 L mol?1 cm?1 depending on the extractant. Butyl acetate was chosen as the extractant. The optimum reaction conditions were established: pH 2–4, concentration of the dye reagent (0.8–1.5) × 10?4 mol L?1. The determination of gold is not hindered even by a 1000‐fold concentration of Ni and Co; a 500‐fold concentration of Pb and Zn; a 100‐fold concentration of Bi, Cu, Cd, Pt, Rh and Ru; or a 20‐fold concentration of Ag. The established method was applied to the determination of gold in model samples and enriched polymetallic ores.  相似文献   

19.
In this study, the electrochemical reduction of nitrite was investigated on poly(4‐aminoacetanilide) (PPAA) forming by cyclic voltammetry at the surface of carbon paste electrode. The electrochemical properties of the modified electrode have been studied by cyclic voltammetry and double potential step chronoamperometry. Results showed that in the optimum condition (pH = 0.00) the reduction of nitrite occurred at a potential about 667 mV more positive than that unmodified carbon paste electrode. This amount of electrocatalytic ability is high compared with other electrocatalysts. Using a chronoamperometric method, the catalytic rate constant (k) was calculated 8.4 × 104 cm3 mol‐1 s‐1. Also, the electrocatalytic reduction peak currents was found to be linear with the nitrite concentration in the ranges of 5 × 10‐4 M to 2.5 × 10‐2 M and 2 × 10‐5 M to 7 × 10‐3 M with detection limits (2σ) were determined as 4.5 × 10‐4 M and 1 × 10‐5 M by cyclic voltammetry (CV) and hydrodynamic amperometry methods respectively. Recovery experiments exhibit the satisfactory results.  相似文献   

20.
《Electroanalysis》2003,15(13):1129-1133
Electrocatalytic oxidation of thymine at α‐cyclodextrin (α‐CD) incorporated carbon nanotube‐coated electrode (CNT/CE) was thoroughly studied in alkaline media. CNT showed an electrocatalytic effect on the oxidation of thymine, formation of a supramolecular inclusion complex between α‐CD and thymine at CNT/CE further enhanced the sensitivity to thymine. The electrocatalytic behavior was further developed as a sensitive detection scheme for thymine by differential pulse voltammetry. A linear calibration over the concentration range from 2.5×10?5 to 1.8×10?3 mol/L in pH 10.8 NaHCO3‐Na2CO3 buffer solution was obtained with a detection limit of 5×10?6 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号