首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐component relativistic density functional theory (DFT) with the second‐order Douglas–Kroll–Hess (DKH2) one‐electron Hamiltonian was applied to the calculation of nuclear magnetic resonance (NMR) shielding constant. Large basis set dependence was observed in the shielding constant of Xe atom. The DKH2‐DFT‐calculated shielding constants of I and Xe in HI, I2, CuI, AgI, and XeF2 agree well with those obtained by the four‐component relativistic theory and experiments. The Au NMR shielding constant in AuF is extremely more positive than in AuCl, AuBr, and AuI, as reported recently. This extremely positive shielding constant arises from the much larger Fermi contact (FC) term of AuF than in others. Interestingly, the absolute values of the paramagnetic and the FC terms are considerably larger in CuF and AuF than in others. The large paramagnetic term of AuF arises from the large d‐components in the Au dπ –F pπ and Au sdσ–F pσ molecular orbitals (MOs). The large FC term in AuF arises from the small energy difference between the Au sdσ + F pσ and Au sdσ–F pσ MOs. The second‐order magnetically relativistic effect, which is the effect of DKH2 magnetic operator, is important even in CuF. This effect considerably improves the overestimation of the spin‐orbit effect calculated by the Breit–Pauli magnetic operator. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The comparison of coupled cluster with single and double excitations and with perturbative correction of triple excitations [CCSD(T)] ground state potential curves of mercury with rare gases (RG): HgHe and HgXe, at several levels of theory is presented. The scalar relativistic (REL) effects and spin‐orbit coupling effects in the ground state potential curves of these weakly bounded dimers are considered. The CCSD(T) ground state potential curves at the level of the Dirac‐Coulomb Hamiltonian (DCH) are compared with CCSD(T) curves at the level of 4‐component spin‐free modified DCH, the scalar 2nd order Douglas‐Kroll‐Hess (DKH2) and the nonrelativistic (NR‐LL) (Lévy‐Leblond) Hamiltonian. In addition, London‐Drude formula and SCF interaction energy curves are employed in the analysis of different contributions of REL effects in dissociation energies of HgRG and Hg2 dimers. Moreover, the large anharmonicity of the HgHe ground state potential curve is highlighted. The computationally less demanding scalar DKH2 Hamiltonian is employed to calculate the HgXe, Hg2, and Xe2 all electron CCSD(T) ground state potential curves in highly augmented quadruple zeta basis sets. These potential curves are used to simulate the shear viscosity of mercury, xenon, and mercury‐xenon (Hg:Xe) mixture. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

3.
Isotropic and anisotropic magnetizabilities for noble gas atoms and a series of singlet and triplet molecules were calculated using the second‐order Douglas‐Kroll‐Hess (DKH2) Hamiltonian containing the vector potential A and in part using second‐order generalized unrestricted Møller‐Plesset (GUMP2) theory. The DKH2 Hamiltonian was resolved into three parts (spin‐free terms, spin‐dependent terms, and magnetic perturbation terms), and the magnetizabilities were decomposed into diamagnetic and paramagnetic terms to investigate the relativistic and electron‐correlation effects in detail. For Ne, Kr, and Xe, the calculated magnetizabilities approached the experimental values, once relativistic and electron‐correlation effects were included. For the IF molecule, the magnetizability was strongly affected by the spin‐orbit interaction, and the total relativistic contribution amounted to 22%. For group 17, 16, 15, and 14 hydrides, the calculated relativistic effects were small (less than 3%), and trends were observed in relativistic and electron‐correlation effects across groups and periods. The magnetizability anisotropies of triplet molecules were generally larger than those of similar singlet molecules. The so‐called relativistic‐correlation interference for the magnetizabilities computed using the relativistic GUMP2 method can be neglected for the molecules evaluated, with exception of triplet SbH. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

4.
Electronic structures of the weakly bound Rn2 were calculated by the two‐component Møller–Plesset second‐order perturbation and coupled‐cluster methods with relativistic effective core potentials including spin–orbit operators. The calculated spin–orbit effects are small, but depend strongly on the size of basis sets and the amount of electron correlations. Magnitudes of spin–orbit effects on De (0.7–3.0 meV) and Re (−0.4∼−2.2 Å) of Rn2 are comparable to previously reported values based on configuration interaction calculations. A two‐component approach seems to be a promising tool to investigate spin–orbit effects for the weak‐bonded systems containing heavy elements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 139–143, 1999  相似文献   

5.
We have observed that the naphthalene-d8 crystal shows 40% less net Davydov splitting than the naphthalene-hg crystal. Comparisons of isotope effects on splittings and intensities show vibronic contributions to both spin—orbit and excitation exchange interactions involving totally symmetric modes.  相似文献   

6.
Uranium‐based compounds have been put forward as ideal candidates for the design of single‐molecule magnets (SMMs) with improved properties, but to date, only two examples of exchange‐coupled 3d–5f SMM containing uranium have been reported and both are based on the MnII ion. Here we have synthesized the first examples of exchange‐coupled uranium SMMs based on FeII and NiII. The SMM behavior of these complexes containing a quasi linear {M?O?U?O?M} core arises from intramolecular Fe?U and Ni?U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. The measured values of the relaxation barrier (53.9±0.9 K in the UFe2 complex and of 27.4±0.5 K in the UNi2 complex) show clearly the dependency on the spin value of the transition metal, providing important new information for the future design of improved uranium‐based SMMs.  相似文献   

7.
8.
New segmented all-electron relativistically contracted (SARC) basis sets have been developed for the elements 81Tl–86Rn, thus extending the SARC family of all-electron basis sets to include the 6p block. The SARC basis sets are separately contracted for the second-order Douglas–Kroll–Hess and the zeroth-order regular approximation scalar relativistic Hamiltonians. Their compact size and segmented construction are best suited to the requirements of routine density functional theory (DFT) applications. Evaluation of the basis sets is performed in terms of incompleteness and contraction errors, orbital properties, ionization energies, electron affinities, and atomic polarizabilities. From these atomic metrics and from computed basis set superposition errors for a series of homonuclear dimers, it is shown that the SARC basis sets achieve a good balance between accuracy and size for efficient all-electron scalar relativistic DFT applications.  相似文献   

9.
Segmented all-electron relativistically contracted (SARC) basis sets are presented for the elements 37Rb–54Xe, for use with the second-order Douglas–Kroll–Hess approach and the zeroth-order regular approximation. The basis sets have a common set of exponents produced with established heuristic procedures, but have contractions optimized individually for each scalar relativistic Hamiltonian. Their compact size and loose segmented contraction, which is in line with the construction of SARC basis sets for heavier elements, makes them suitable for routine calculations on large systems and when core spectroscopic properties are of interest. The basis sets are of triple-zeta quality and come in singly or doubly polarized versions, which are appropriate for both density functional theory and correlated wave function theory calculations. The quality of the basis sets is assessed against large decontracted reference basis sets for a number of atomic and ionic properties, while their general applicability is demonstrated with selected molecular examples.  相似文献   

10.
11.
Zero‐field splitting (ZFS) tensors ( D tensors) of organic high‐spin oligonitrenes/oligocarbenes up to spin‐septet are quantitatively determined on the basis of quantum chemical calculations. The spin–orbit contributions, D SO tensors are calculated in terms of a hybrid CASSCF/MRMP2 approach, which was recently proposed by us. The spin–spin counterparts, D SS tensors are computed based on McWeeny–Mizuno’s equation in conjunction with the RODFT spin densities. The present calculations show that more than 10 % of ZFS arises from spin–orbit interactions in the high‐spin nitrenes under study. Contributions of spin‐bearing site–site interactions are estimated with the aid of a semi‐empirical model for the D tensors and found to be ca. 5 % of the D SO tensor. The analysis of intermediate states reveal that the largest contributions to the calculated D SO tensors are attributed to intra‐site spin flip excitations and delocalized π and π* orbitals play an important role in the inter‐site spin–orbit interactions.  相似文献   

12.
The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin‐orbit, the paramagnetic spin‐orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one‐bond and two‐bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen‐bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one‐bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton‐acceptor or proton‐donor) present in the interaction. Two‐bond intermolecular coupling constants vary more than the corresponding one‐bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin‐orbit term in all one‐bond interaction.  相似文献   

13.
A two-component Kramers' restricted Hartree–Fock method (KRHF) has been developed for the polyatomic molecules with closed shell configurations. The present KRHF program utilizes the relativistic effective core potentials with spin–orbit operators at the Hartree–Fock (HF) level and produces molecular spinors obeying the double group symmetry. The KRHF program enables the variational calculation of spin–orbit interactions at the HF level. KRHF calculations have been performed for the HX, X2, XY(X, Y = I, Br), and CH3I molecules. It is demonstrated that the orbital energies from KRHF calculations are useful for the interpretation of spin-orbit splittings in photoelectron spectra. In all molecules studied, bond lengths are only slightly expanded, harmonic vibrational frequencies are reduced, and bond energies are significantly decreased by the spin–orbit interactions.  相似文献   

14.
《Chemphyschem》2004,5(3):349-366
Measured one‐bond spin–spin coupling constants (SSCC) 1J(CC) can be used to describe the nature of the C–C bond, provided one is able to separate the various coupling mechanisms leading to 1J(CC). The Fermi‐contact (FC) term probes the first‐order density at the positions of the coupling nuclei, whereas the noncontact terms (the paramagnetic spin orbit (PSO) and the spin–dipole (SD) terms) probe the π character of the C–C bond (the diamagnetic spin orbit (DSO) term can mostly be neglected). A model is tested, in which the value of the FC(CC) term is estimated with the help of measured SSCCs 1J(CH). The difference between the measured J(CC) and the estimated FC(CC) values, Δ(CC)=PSO(CC)+SD(CC)+DSO(CC), provides a semiquantitative measure of the π character of a C–C multiple bond. The applicability and limitations of this approach are discussed by partitioning the four Ramsey terms of the SSCC 1J(CC) into one‐ and two‐orbital contributions. The FC, PSO, and SD terms of 1J(CC) are explained and analyzed with regard to their relationship to other C–C bond properties. It is shown that empirical relationships between measured SSCCs and the s character of a bond need reconsideration.  相似文献   

15.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent, two‐component relativistic calculations, termed the Kramers‐unrestricted HF (KUHF) method, is developed. The present KUHF method, which is formulated as a relativistic counterpart of nonrelativistic UHF, is based on quaternion algebra and partly uses time‐reversal symmetry. The fundamental characteristics of KUHF are discussed in this study. From numerical assessments, it was revealed that KUHF gives a corresponding solution to nonrelativistic UHF; furthermore, KUHF properly describes spin‐orbit interactions. In addition, KUHF can improve the self‐consistent field convergence behavior in spin‐dependent calculations, for example, for f‐block elements.  相似文献   

16.
The nature of chemical bonds in a ferredoxin‐type [2Fe–2S] cluster has been investigated on the basis of natural orbitals and several bond indices developed in Parts I and II of this study. The broken‐symmetry hybrid density functional theory (BS‐HDFT) with spin projection approach has been applied to elucidate the natural orbitals and occupation numbers for a model compound [Fe2S2(SCH3)4] (1), which is used to calculate the indices. The molecular structure, vibration frequencies, electronic structures, and magnetic properties in both oxidized and reduced forms of 1 have been calculated and compared with the experimental values. The optimized molecular structures after approximate spin projection have been in good agreement with experimental data. The structure changes upon one‐electron reduction have been slight (<0.1 Å) and only limited around one side of the Fe atom. Raman and infrared (IR) spectra have been calculated, and their vibration modes have been assigned using the bridging 34S isotope substitution. Their magnetic properties have been examined in terms of spin Hamiltonians that contain exchange interactions and double exchange interactions. The BS‐HDFT methods have provided the magnetic parameters; i.e., effective exchange integral (J) values and valence delocalization (B) values, which agree with the experimental results. It is found that large charge transfer (CT) from the bridging sulfur to the iron atoms has led to the strong antiferromagnetic interactions between iron atoms. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
We present ab initio methods to determine the Dzyaloshinskii–Moriya (DM) parameter, which provides the anisotropic effects of noncollinear spin systems. For this purpose, we explore various general spin orbital (GSO) approaches, such as Hartree–Fock (HF), density functional theory (DFT), and configuration interaction (CI), with one‐electron spin–orbit coupling (SOC1). As examples, two simple D3h‐symmetric models, H3 and B(CH2)3, are examined. Implications of the computational results are discussed in relation to as isotropic and anisotropic interactions of molecular‐based magnets. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

18.
By using a set of model reactions, we estimated the heat of formation of gaseous UO22+ from quantum‐chemical reaction enthalpies and experimental heats of formation of reference species. For this purpose, we performed relativistic density functional calculations for the molecules UO22+, UO2, UF6, and UF5. We used two gradient‐corrected exchange‐correlation functionals (revised Perdew–Burke–Ernzerhof (PBEN) and Becke–Perdew (BP)) and we accounted for spin‐orbit interaction in a self‐consistent fashion. Indeed, spin‐orbit interaction notably affects the energies of the model reactions, especially if compounds of UIV are involved. Our resulting theoretical estimates for Δf (UO22+), 365±10 kcal mol?1 (PBEN) and 370±12 kcal mol?1 (BP), are in quantitative agreement with a recent experimental result, 364±15 kcal mol?1. Agreement between the results of the two different exchange‐correlation functionals PBEN and BP supports the reliability of our approach. The procedure applied offers a general means to derive unknown enthalpies of formation of actinide species based on the available well‐established data for other compounds of the element in question.  相似文献   

19.
The Kramers' restricted Hartree–Fock (KRHF) and second-order Møller–Plesset perturbation (KRMP2) methods using relativistic effective core potentials (RECP) with spin–orbit operators and two-component spinors are extended to the unrestricted forms, KUHF and KUMP2. As in the conventional unrestricted methods, the KUHF and KUMP2 methods are capable of qualitatively describing the bond breaking for a single bond. As a result, it is possible to estimate spin–orbit effects along the dissociation curve at the HF and MP2 levels of theory as is demonstrated by the test calculations on the ground states of HI and CH3I. Since the energy lowering due to spin–orbit interactions is larger for the I atom than for the closed-shell molecules, dissociation energies are reduced and bond lengths are slightly elongated by the inclusion of the spin–orbit interactions. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 91–98, 1998  相似文献   

20.
We study the excited states of two iridium(III) complexes with potential applications in organic light‐emitting diodes: fac‐tris(2‐phenylpyridyl)iridium(III) [Ir(ppy)3] and fac‐tris(1‐methyl‐5‐phenyl‐3‐n‐propyl‐[1,2,4]triazolyl)iridium(III) [Ir(ptz)3]. Herein we report calculations of the excited states of these complexes from time‐dependent density functional theory (TDDFT) with the zeroth‐order regular approximation (ZORA). We show that results from the one‐component formulation of ZORA, with spin–orbit coupling included perturbatively, accurately reproduce both the results of the two‐component calculations and previously published experimental absorption spectra of the complexes. We are able to trace the effects of both scalar relativistic correction and spin–orbit coupling on the low‐energy excitations and radiative lifetimes of these complexes. In particular, we show that there is an indirect relativistic stabilisation of the metal‐to‐ligand charge transfer (MLCT) states. This is important because it means that indirect relativistic effects increase the degree to which SOC can hybridise singlet and triplet states and hence plays an important role in determining the optical properties of these complexes. We find that these two compounds are remarkably similar in these respects, despite Ir(ppy)3 and Ir(ptz)3 emitting green and blue light respectively. However, we predict that these two complexes will show marked differences in their magnetic circular dichroism (MCD) spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号