首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 876 毫秒
1.
Currently the theories to explain and predict the classification of the electronic reorganization due to the torquoselectivity of a ring‐opening reaction cannot accommodate the directional character of the reaction pathway; the torquoselectivity is a type of stereoselectivity and therefore is dependent on the pathway. Therefore, in this investigation we introduced new measures from quantum theory of atoms in molecules and the stress tensor to clearly distinguish and quantify the transition states of the inward (TSIC) and outward (TSOC) conrotations of competitive ring‐opening reactions of 3‐(trifluoromethyl)cyclobut‐1‐ene and 1‐cyano‐1‐methylcyclobutene. We find the metallicity ξ( r b) of the ring‐opening bond does not occur exactly at the transition state in agreement with transition state theory. The vector‐based stress tensor response βσ was used to distinguish the effect of the CN, CH3, and CF3 groups on the TSIC and TSOC paths that was consistent with the ellipticity ε, the total local energy density H( rb ) and the stress tensor stiffness Sσ. We determine the directional properties of the TSIC and TSOC ring‐opening reactions by constructing a stress tensor space with trajectories (s) with length l in real space, longer l correlated with the lowest density functional theory‐evaluated total energy barrier and hence will be more thermodynamically favored. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
3.
Trifluoromethylation of acetonitrile with 3,3‐dimethyl‐1‐(trifluoromethyl)?1λ3,2‐ benziodoxol is assumed to occur via reductive elimination (RE) of the electrophilic CF3‐ligand and MeCN bound to the hypervalent iodine. Computations in gas phase showed that the reaction might also occur via an SN2 mechanism. There is a substantial solvent effect present for both reaction mechanisms, and their energies of activation are very sensitive toward the solvent model used (implicit, microsolvation, and cluster‐continuum). With polarizable continuum model‐based methods, the SN2 mechanism becomes less favorable. Applying the cluster‐continuum model, using a shell of solvent molecules derived from ab initio molecular dynamics (AIMD) simulations, the gap between the two activation barriers ( ) is lowered to a few kcal mol?1 and also shows that the activation entropies ( ) and volumes ( ) for the two mechanisms differ substantially. A quantitative assessment of will therefore only be possible using AIMD. A natural bond orbital‐analysis gives further insight into the activation of the CF3‐reagent by protonation. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
A density functional theory study is performed to predict the structures and stability of carbon monoxide (CO) bound (E = C, Si, Ge, Sn, Pb; X = H, F, Cl, Br, I) complexes. The possibility of bonding through both C‐ and O‐sides of CO is considered. Thermochemical analysis reveals that all the dissociation processes producing CO and are endothermic in nature whereas most of the dissociation reactions are endergonic in nature at room temperature. The nature of bonding in E? C/O bonds is analyzed via Wiberg bond index, natural population analysis, electron density, and energy decomposition analyses in conjunction with natural orbitals for chemical valence scheme. In comparison to C? O stretching frequency ( ) in free CO, while a red shift is noted in O‐side binding, the C‐side binding results in a blue shift in . The relative change in values in CO bound complexes on changing either E or X is scrutinized and possible explanation is provided in terms of polarization in the σ‐ and π‐orbitals and the relative strength of C→E or O→E σ‐donation and E→C or E→O π‐back‐donation. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
This study probes the nature of noncovalent interactions, such as cation–π, metal ion–lone pair (M–LP), hydrogen bonding (HB), charge‐assisted hydrogen bonding (CAHB), and π–π interactions, using energy decomposition schemes—density functional theory (DFT)–symmetry‐adapted perturbation theory and reduced variational space. Among cation–π complexes, the polarization and electrostatic components are the major contributors to the interaction energy (IE) for metal ion–π complexes, while for onium ion–π complexes ( , , , and ) the dispersion component is prominent. For M–LP complexes, the electrostatic component contributes more to the IE except the dicationic metal ion complexes with H2S and PH3 where the polarization component dominates. Although electrostatic component dominates for the HB and CAHB complexes, dispersion is predominant in π–π complexes.Copyright © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The (nitro)(N‐methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO2)(S2CNHMe)(PMe3)] complex catalyses efficiently the O‐atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO2)(S2CNHMe)(PMe3)] ↔ Ni(NO2)(S2CNHMe)(PMe3) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five‐member metallacycle intermediate, via a [3 + 2] cyclo‐addition reaction of HC≡CH to the Ni‐N = O moiety of the Ni(NO2)(S2CNHMe)(PMe3)] complex, followed by a β H‐atom migration toward the Cα carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( ‐NO2)(S2CNHMe)(PMe3)] [Ni( ‐ONO)(S2CNHMe)(PMe3)] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
A Cyclic Methylenediphosphinic Acid: 1,3‐Dihydroxy‐1,3‐dioxo‐1,2,3,4‐tetrahydro‐1λ5,3λ5‐[1,3]diphosphinine Strong acids protonate 1,3‐bis(dimethylamino)‐1λ5,3λ5‐[1,3]diphosphinine ( 5 ) to give the corresponding cation. The protonation is followed by hydrolytic cleavage of the dimethylamino groups resulting in the formation of the cyclic methylenediphosphinic acid ( 6 ).  相似文献   

8.
The regioselectivity of the NHC‐Pd catalyzed Heck coupling reaction between phenyl bromide and styrene has been investigated using the density functional theory, wave‐function (WF)‐based methods and two different sizes of model ligands. In addition to the WF methods, the TPSS‐D3, B97X‐D, BP86‐D3, and M06‐L density functionals were reliable approaches to be applied, independently of the basis set. Moreover, the NCI analysis showed that weak interactions are important forces to be taken into account when exploring the regioselectivity of this reaction, mainly when a crowded NHC ligand is present. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
Palladium(II) Complexes of 1,1,3,3,5,5‐Hexakis(dimethylamino)‐λ5‐[1,3,5]triphosphinine 1,1,3,3,5,5‐Hexakis(dimethylamino)‐1λ5‐3λ5‐5λ5‐[1,3,5]triphosphinine ( 5 ) reacts with (benzonitrile)2PdCl2 to give the chelate complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2,C4)palladium ( 6 ). In a pyridine‐d5 solution of 6 the complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2)((2H5)pyridine‐N)palladium ( 7 ) is formed. The solute 7 could not be isolated as a solid, because elimination of the solvent regenerates 6 quantitatively. Properties, nmr and ir spectra of 6 and 7 are reported. 6 is characterized by the results of an X‐ray structural analysis.  相似文献   

10.
The benzene‐benzene (Bz‐Bz) interaction is present in several chemical systems and it is known to be crucial in understanding the specificity of important biological phenomena. In this work, we propose a novel Bz‐Bz analytical potential energy surface which is fine‐tuned on accurate ab initio calculations in order to improve its reliability. Once the Bz‐Bz interaction is modeled, an analytical function for the energy of the clusters may be obtained by summing up over all pair potentials. We apply an evolutionary algorithm (EA) to discover the lowest‐energy structures of clusters (for ), and the results are compared with previous global optimization studies where different potential functions were employed. Besides the global minimum, the EA also gives the structures of other low‐lying isomers ranked by the corresponding energy. Additional ab initio calculations are carried out for the low‐lying isomers of and clusters, and the global minimum is confirmed as the most stable structure for both sizes. Finally, a detailed analysis of the low‐energy isomers of the n = 13 and 19 magic‐number clusters is performed. The two lowest‐energy isomers show S6 and C3 symmetry, respectively, which is compatible with the experimental results available in the literature. The structures reported here are all non‐symmetric, showing two central Bz molecules surrounded by 12 nearest‐neighbor monomers in the case of the five lowest‐energy structures. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
An algorithm of the accompanying coordinate expansion and recurrence relation (ACE‐RR), which is used for the rapid evaluation of the electron repulsion integral (ERI), has been extended to the general‐contraction (GC) scheme. The present algorithm, denoted by GC‐ACE‐RR, is designed for molecular calculations including heavy elements, whose orbitals consist of many primitive functions with and without higher angular momentum such as d‐ and f‐orbitals. The performance of GC‐ACE‐RR was assessed for ‐, ‐, ‐, and ‐type ERIs in terms of contraction length and the number of GC orbitals. The present algorithm was found to reduce the central processing unit time compared with the ACE‐RR algorithm, especially for higher angular momentum and highly contracted orbitals. Compared with HONDOPLUS and GAMESS program packages, GC‐ACE‐RR computations for ERIs of three‐dimensional gold clusters Aun (n = 1, 2, …, 10, 15, 20, and 25) are more than 10 times faster. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Based on the energy decomposition analysis of an interacting system, we propose a method for force constant decomposition analysis with respect to the specific normal coordinate. Using the presented method, we examined the penta‐coordinated system (X = C, Si, Ge), which possesses a three‐center four‐electron bond. The origin of the difference in the stability of the penta‐coordinated D3h structures was clearly shown to be the effect of electron delocalization–polarization term. © 2018 Wiley Periodicals, Inc.  相似文献   

13.
We report DFT studies on some perylene‐based dyes for their electron transfer properties in solar cell applications. The study involves modeling of different donor‐π‐acceptor type sensitizers, with perylene as the donor, furan/pyrrole/thiophene as the π‐bridge and cyanoacrylic group as the acceptor. The effect of different π‐bridges and various substituents on the perylene donor was evaluated in terms of opto‐electronic and photovoltaic parameters such as HOMO‐LUMO energy gap, λmax, light harvesting efficiency(LHE), electron injection efficiency (Øinject), excited state dye potential (Edye*), reorganization energy(λ), and free energy of dye regeneration (). The effect of various substituents on the dye–I2 interaction and hence recombination process was also evaluated. We found that the furan‐based dimethylamine derivative exhibits a better balance of the various optical and photovoltaic properties. Finally, we evaluated the overall opto‐electronic and transport parameters of the TiO2‐dye assembly after anchoring the dyes on the model TiO2 cluster assembly.  相似文献   

14.
The transition from 2D to 3D structures in small gold clusters occurs around 10 atoms. Density functional theory predicts a planar structure for in contrast to recent second‐order Møller–Plesset perturbation theory calculations, which predict a 3D arrangement. The validity of the use of single‐reference second‐order Møller–Plesset theory for near metallic systems remains, however, questionable. On the other hand, it is less than clear how well density functional approximations perform for such clusters. We, therefore, decided to carry out quantum chemical calculations for using a variety of different density functionals as well as wavefunction‐based methods including coupled cluster theory to compare the different energetically low lying 2D and 3D cluster isomers. The results are perhaps not encouraging showing that most computational methods do not predict correctly the energetic sequence of isomers compared to coupled cluster theory. As perturbative triple corrections in the coupled cluster treatment change the order in cluster stability, the onset of 2D to 3D transition in these gold clusters remains elusive. As expected, second‐order Møller–Plesset theory is not suitable for correctly describing such systems.  相似文献   

15.
Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss‐type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so‐called two‐potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth‐order final continuum state and the first‐order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss‐type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular‐frame photoelectron angular distributions of and . In the calculations of , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
The physical nature of charge‐inverted hydrogen bonds in H3XH YH3 (X = Si, Ge; Y = Al, Ga) dimer systems is studied by means of the SAPT(DFT)‐based decomposition of interaction energies and supermolecular interaction energies based on MP2, SCS‐MP2, MP2C, and CCSD(T) methods utilizing dimer‐centered aug‐cc‐pCVnZ (n = D, T, Q) basis sets as well as an extrapolation to the complete basis set limit. It is revealed that charge‐inverted hydrogen bonds are inductive in nature, although dispersion is also important. Computed interaction energies form the following relation: . It is confirmed that the aug‐cc‐pCVDZ basis set performs poorly and that very accurate values of interaction and dispersion energies require basis sets of at least quadrupole‐ζ quality. Considerably large binding energies suggest potential usefulness of charge‐inverted hydrogen bonds as an important structural motif in molecular binding. Terminology applying to σ‐ and π‐hole interactions as well as to triel and tetrel bonds is discussed. According to this new terminology the charge‐inverted hydrogen bond would become the first described case of a hydride‐triel bond. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
The accurate ground‐state potential energy surface of germanium dicarbide, GeC2, has been determined from ab initio calculations using the coupled‐cluster approach. The core–electron correlation, higher‐order valence‐electron correlation, and scalar relativistic effects were taken into account. The potential energy surface of GeC2 was shown to be extraordinarily flat near the T‐shaped equilibrium configuration. The potential energy barrier to the linear CCGe configuration was predicted to be 1218 cm−1. The vibration–rotation energy levels of some GeC2 isotopologues were calculated using a variational method. The vibrational bending mode ν3 was found to be highly anharmonic, with the fundamental wavenumber being only 58 cm−1. Vibrational progressions due to this mode were predicted for the , , and states of GeC2. © 2018 Wiley Periodicals, Inc.  相似文献   

18.
A quantum mechanical/molecular mechanical (QM/MM) approach based on the density‐functional tight‐binding (DFTB) theory is a useful tool for analyzing chemical reaction systems in detail. In this study, an efficient QM/MM method is developed by the combination of the DFTB/MM and particle mesh Ewald (PME) methods. Because the Fock matrix, which is required in the DFTB calculation, is analytically obtained by the PME method, the Coulomb energy is accurately and rapidly computed. For assessing the performance of this method, DFTB/MM calculations and molecular dynamics simulation are conducted for a system consisting of two amyloid‐β(1‐16) peptides and a zinc ion in explicit water under periodic boundary conditions. As compared with that of the conventional Ewald summation method, the computational cost of the Coulomb energy by utilizing the present approach is drastically reduced, i.e., 166.5 times faster. Furthermore, the deviation of the electronic energy is less than . © 2016 Wiley Periodicals, Inc.  相似文献   

19.
In this article, we present the results of our comprehensive studies of 72 dimers of the type (X = Si, Ge; Y = B, Al, Ga; RX = H, Cl, Me; RY = H, F, Cl, Me) and featuring hydride‐triel bonds (i.e., charge‐inverted hydrogen bonds). Influence of X and Y atoms as well as RX and RY substituents on various properties of these dimers is investigated in detail. In particular the strength of the H⋯Y hydride‐triel bonds is paid a close attention and it is shown that hydride‐triel bonds can be strong enough to considerably determine structure and properties of molecular systems. In addition, properties of the investigated dimers are largely governed by the charge transfer from the Lewis base to the Lewis acid, which is particularly important if more bulky and polarizable RY and Y atoms are present in the molecule. Several excellent linear (R2 close to 1) and exponential correlations between pairs of diverse parameters are presented. Few instances are discussed where somewhat unexpected bond paths exist between two atoms featuring partial negative charges (e.g., between hydride hydrogen and halogen and between lateral sides of two halogens) showing that in some cases a bond path prefers to link two closely spaced electron‐rich atoms instead of two atoms that are expected to form a bond. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
This work describes the synthesis of π‐conjugated polymers possessing arylene and 1,3‐butadiene alternating units in the main chain by the reaction of α,β‐unsaturated ester/nitrile containing γ‐H with aromatic/heteroaromatic aldehyde compound. By using 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst to give a 1,3‐butadiene‐containing π‐conjugated polymer, poly(phenylene‐1,3‐butadiene), in 84.3% yield with and / (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π‐conjugated polymers containing 1,3‐butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six‐membered ring transition state and then a 1,5‐H shift intermediate.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号