首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分子力场进展   总被引:4,自引:0,他引:4  
分子力学(简称MM)是近年来化学家常用的一种计算方法。与量子力学从头计算和半经验方法相比,用分子力学处理大分子可以大大节省计算时间,而且,在大多数情况下,用分子力学方法计算得到的分子几何构型参数与实验值之间的差值可在实验误差范围之内。所以,分子力学是研究生物化学体系的有效和可行的手段。分子力学的核心是分子力场。本文介绍了分子力场的量子力学背景、分子力场和光谱力场之间的关系。分子力场的一般形式、分力  相似文献   

2.
The Quantum‐to‐molecular mechanics method (Q2MM) for converting quantum mechanical transition states (TSs) to molecular mechanical minima has been modified to allow a fit to the “natural” reaction mode eigenvalue. The resulting force field gives an improved representation of the energy curvature at the TS, but can potentially give false responses to steric interactions. Ways to address this problem while staying close to the “natural” TS force field are discussed. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The implementation and validation of the adaptive buffered force (AdBF) quantum‐mechanics/molecular‐mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM‐MM interface errors by discarding forces near the boundary according to the buffered force‐mixing approach. New adaptive thermostats, needed by force‐mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl‐phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force‐mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

4.
5.
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009 , 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self‐consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree–Fock–Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self‐consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave‐function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Condensed‐phase computational studies of molecules using molecular mechanics approaches require the use of force fields to describe the energetics of the systems as a function of structure. The advantage of polarizable force fields over nonpolarizable (or additive) models lies in their ability to vary their electronic distribution as a function of the environment. Toward development of a polarizable force field for biological molecules, parameters for a series of sulfur‐containing molecules are presented. Parameter optimization was performed to reproduce quantum mechanical and experimental data for gas phase properties including geometries, conformational energies, vibrational spectra, and dipole moments as well as for condensed phase properties such as heats of vaporization, molecular volumes, and free energies of hydration. Compounds in the training set include methanethiol, ethanethiol, propanethiol, ethyl methyl sulfide, and dimethyl disulfide. The molecular volumes and heats of vaporization are in good accordance with experimental values, with the polarizable model performing better than the CHARMM22 nonpolarizable force field. Improvements with the polarizable model were also obtained for molecular dipole moments and in the treatment of intermolecular interactions as a function of orientation, in part due to the presence of lone pairs and anisotropic atomic polarizability on the sulfur atoms. Significant advantage of the polarizable model was reflected in calculation of the dielectric constants, a property that CHARMM22 systematically underestimates. The ability of this polarizable model to accurately describe a range of gas and condensed phase properties paves the way for more accurate simulation studies of sulfur‐containing molecules including cysteine and methionine residues in proteins. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
Accurate computational estimate of the protein–ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein–ligand simulations, we use a protein‐specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO‐RESP method to two proteins, dodecin, and lysozyme, we found that protein‐specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO‐RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase‐2 (MMP‐2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all‐atom three‐dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace‐Gln‐Gly~Ile‐Ala‐Gly‐Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four‐step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C? N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5–10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate‐limiting step in MMP‐2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
We present a new protocol for deriving force constant parameters that are used in molecular mechanics (MM) force fields to describe the bond‐stretching, angle‐bending, and dihedral terms. A 3 × 3 partial matrix is chosen from the MM Hessian matrix in Cartesian coordinates according to a simple rule and made as close as possible to the corresponding partial Hessian matrix computed using quantum mechanics (QM). This partial Hessian fitting (PHF) is done analytically and thus rapidly in a least‐squares sense, yielding force constant parameters as the output. We herein apply this approach to derive force constant parameters for the AMBER‐type energy expression. Test calculations on several different molecules show good performance of the PHF parameter sets in terms of how well they can reproduce QM‐calculated frequencies. When soft bonds are involved in the target molecule as in the case of secondary building units of metal‐organic frameworks, the MM‐optimized geometry sometimes deviates significantly from the QM‐optimized one. We show that this problem is rectified effectively by use of a simple procedure called Katachi that modifies the equilibrium bond distances and angles in bond‐stretching and angle‐bending terms. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
We describe the development of force field parameters for methylated lysines and arginines, and acetylated lysine for the CHARMM all‐atom force field. We also describe a CHARMM united‐atom force field for modified sidechains suitable for use with fragment‐based docking methods. The development of these parameters is based on results of ab initio quantum mechanics calculations of model compounds with subsequent refinement and validation by molecular mechanics and molecular dynamics simulations. The united‐atom parameters are tested by fragment docking to target proteins using the MCSS procedure. The all‐atom force field is validated by molecular dynamics simulations of multiple experimental structures. In both sets of calculations, the computational predictions using the force field were compared to the corresponding experimental structures. We show that the parameters yield an accurate reproduction of experimental structures. Together with the existing CHARMM force field, these parameters will enable the general modeling of post‐translational modifications of histone tails. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

11.
A modified molecular structural mechanics method, based on molecular mechanics and similar to the finite element method, was developed. The energy of a system was expressed by the force field functions of the molecular mechanics. Under the small deformation assumption and by the principle of minimum potential energy, the system function was established. The properties of tension and bending of single-walled carbon nanotubes were analyzed. The Young's modulus is about 0.36 TPa nm, which agrees perfectly with the results of previous analysis by other researchers. It is found, for the first time, that the Young's moduli, for Zigzag nanotubes, are different from each other when the system energy was expressed as the sum of two or three individual energy terms in molecular mechanics. Whereas, the Young's moduli were the same for the Armchair nanotubes. It is found, when simulating the bending, that the deflections are closer to the theoretical ones, of the classical elasticity, when the diameter of the carbon nanotube increases.  相似文献   

12.
13.
In this study, we have focussed on type-II polyanions such as [M(7)O(24)](6-), and we have developed and validated optimized force fields that include electrostatic and van der Waals interactions. These contributions to the total steric energy are described by the nonbonded term, which encompasses all interactions between atoms that are not transmitted through the bonds. A first validation of a stochastic technique based on genetic algorithms was previously made for the optimization of force fields dedicated to type-I polyoxometalates. To describe the new nonbonded term added in the functional, a fixed-charged model was chosen. Therefore, one of the main issues was to analyze that which partial atomic charges could be reliably used to describe these interactions in such inorganic compounds. Based on several computational strategies, molecular mechanics (MM) force field parameters were optimized using different types of atomic charges. Moreover, the influence of the electrostatic and van der Waals buffering constants and 1,4-interactions scaling factors used in the force field were also tested, either being optimized as well or fixed with respect to the values of CHARMM force field. Results show that some atomic charges are not well adapted to CHARMM parameters and lead to unrealistic MM-optimized structures or a MM divergence. As a result, a new scaling factor has been optimized for Quantum Theory of Atoms in Molecules charges and charges derived from the electrostatic potential such as ChelpG. The force fields optimized can be mixed with the CHARMM force field, without changing it, to study for the first time hepta-anions interacting with organic molecules.  相似文献   

14.
The physical properties of a diverse group of 12 oxocarbenium ions have been studied with ab initio calculations at the MP2/6‐31+G* level of theory. Based on theoretically derived properties such as molecular equilibrium geometry, dipole moment, and vibrational frequencies, a molecular mechanics (MM3) force field has been developed with the assistance of the programs TORSMART and MPMSR, components of our artificial parameter development and refinement method. The MM3 force field is now able to reproduce bond lengths, bond angles, moments of inertia, dipole moments, torsional energy profiles, and vibrational frequencies of oxocarbenium ions, which will allow further studies of glycoside hydrolysis and their rates of reaction. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 329–339, 2000  相似文献   

15.
We present a set of force field (FF) parameters compatible with the AMBER03 FF to describe five cofactors in photosystem II (PSII) of oxygenic photosynthetic organisms: plastoquinone‐9 (three redox forms), chlorophyll‐a, pheophytin‐a, heme‐b, and β‐carotene. The development of a reliable FF for these cofactors is an essential step for performing molecular dynamics simulations of PSII. Such simulations are important for the calculation of absorption spectrum and the further investigation of the electron and energy transfer processes. We have derived parameters for partial charges, bonds, angles, and dihedral‐angles from solid theoretical models using systematic quantum mechanics (QM) calculations. We have shown that the developed FF parameters are in good agreement with both ab initio QM and experimental structural data in small molecule crystals as well as protein complexes. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
We comprehensively illustrate a general process of fitting all‐atom molecular mechanics force field (FF) parameters based on quantum mechanical calculations and experimental thermodynamic data. For common organic molecules with free dihedral rotations, this FF format is comprised of the usual bond stretching, angle bending, proper and improper dihedral rotation, and 1–4 scaling pair interactions. An extra format of 1–n scaling pair interaction is introduced when a specific intramolecular rotation is strongly hindered. We detail how the preferred order of fitting all intramolecular FF parameters can be determined by systematically generating characteristic configurations. The intermolecular Van der Waals parameters are initially taken from the literature data but adjusted to obtain a better agreement between the molecular dynamics (MD) simulation results and the experimental observations if necessary. By randomly choosing the molecular configurations from MD simulation and comparing their energies computed from FF parameters and quantum mechanics, the FF parameters can be verified self‐consistently. Using an example of a platform chemical 3‐hydroxypropionic acid, we detail the comparison between the new fitting parameters and the existing FF parameters. In particular, the introduced systematic approach has been applied to obtain the dihedral angle potential and 1–n scaling pair interaction parameters for 48 organic molecules with different functionality. We suggest that this procedure might be used to obtain better dihedral and 1–n interaction potentials when they are not available in the current widely used FF. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Iron‐sulfur proteins involved in electron transfer reactions have finely tuned redox potentials, which allow them to be highly efficient and specific. Factors such as metal center solvent exposure, interaction with charged residues, or hydrogen bonds between the ligand residues and amide backbone groups have all been pointed out to cause such specific redox potentials. Here, we derived parameters compatible with the AMBER force field for the metal centers of iron‐sulfur proteins and applied them in the molecular dynamics simulations of three iron‐sulfur proteins. We used density‐functional theory (DFT) calculations and Seminario's method for the parameterization. Parameter validation was obtained by matching structures and normal frequencies at the quantum mechanics and molecular mechanics levels of theory. Having guaranteed a correct representation of the protein coordination spheres, the amide H‐bonds and the water exposure to the ligands were analyzed. Our results for the pattern of interactions with the metal centers are consistent to those obtained by nuclear magnetic resonance spectroscopy (NMR) experiments and DFT calculations, allowing the application of molecular dynamics to the study of those proteins. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
A free energy perturbation (FEP) method was developed that uses ab initio quantum mechanics (QM) for treating the solute molecules and molecular mechanics (MM) for treating the surroundings. Like our earlier results using AM1 semi empirical QMs, the ab initio QM/MM-based FEP method was shown to accurately calculate relative solvation free energies for a diverse set of small molecules that differ significantly in structure, aromaticity, hydrogen bonding potential, and electron density. Accuracy was similar to or better than conventional FEP methods. The QM/MM-based methods eliminate the need for time-consuming development of MM force field parameters, which are frequently required for drug-like molecules containing structural motifs not adequately described by MM. Future automation of the method and parallelization of the code for Linux 128/256/512 clusters is expected to enhance the speed and increase its use for drug design and lead optimization.  相似文献   

19.
A combination of molecular mechanics and the charge equilibration method was applied and further developed to predicting the catalyst activity of a metal complex. A late transition metal catalyst, {di‐μ‐bromotetra [N,N′‐bis(3,5‐dimethylanil)‐4‐methyl‐2,6‐bis(imino)phenoxy]nickel} bromide (MOL) was dealt with. A modified molecular force field from universal force field was set and validated for this system. Simulations predict that the activity of MOL varies little with temperature. Simulation results were in good agreement with experimental results for ethylene oligomerization with MOL.

Temperature dependence of QEq charge on the Ni central atom of MOL.  相似文献   


20.
The self-consistent Madelung potential (SCMP) approach for calculating molecular wave functions for a subunit embedded in a symmetrical environment constituted by the copies of the subunit is implemented with semiempirical NDDO model Hamiltonians and supplemented with empirically parameterized dispersion–repulsion interaction potentials. This model yields sublimation enthalpies in good agreement with available experimental data for a series of molecular crystals, including imidazol, benzimidazole, urea, urethane, dicyaneamide, formamide, uracil, cytosine, maleic anhydride, succinic anhydride, and 1,3,5-triamino-2,4,6-trinitro-benzene. The SCMP-NDDO method, which avoids difficulties concerning the parametrization of charges in the molecular mechanics force fields, is proposed mainly for the treatment of molecular crystals with large unit cells. It might be particularly useful where important charge reorganization is expected under the effect of the crystal field. Charge distributions, obtained by the SCMP and the simple dielectric cavity self-consistent reaction field models, are compared and analyzed. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 38–50, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号