共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Duan Y Wu C Chowdhury S Lee MC Xiong G Zhang W Yang R Cieplak P Luo R Lee T Caldwell J Wang J Kollman P 《Journal of computational chemistry》2003,24(16):1999-2012
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. 相似文献
3.
Anmol Kumar Ozge Yoluk Alexander D. MacKerell Jr. 《Journal of computational chemistry》2020,41(9):958-970
Accurate force-field (FF) parameters are key to reliable prediction of properties obtained from molecular modeling (MM) and molecular dynamics (MD) simulations. With ever-widening applicability of MD simulations, robust parameters need to be generated for a wider range of chemical species. The CHARMM General Force Field program (CGenFF, https://cgenff.umaryland.edu/ ) is a tool for obtaining initial parameters for a given small molecule based on analogy with the available CGenFF parameters. However, improvement of these parameters is often required and performing their optimization remains tedious and time consuming. In addition, tools for optimization of small molecule parameters in the context of the Drude polarizable FF are not yet available. To overcome these issues, the FFParam package has been designed to facilitate the parametrization process. The package includes a graphical user interface (GUI) created using Qt libraries. FFParam supports Gaussian and Psi4 for performing quantum mechanical calculations and CHARMM and OpenMM for MM calculations. A Monte Carlo simulated annealing (MCSA) algorithm has been implemented for automated fitting of partial atomic charge, atomic polarizabilities and Thole scale parameters. The LSFITPAR program is called for automated fitting of bonded parameters. Accordingly, FFParam provides all the features required for generation and analysis of CHARMM and Drude FF parameters for small molecules. FFParam-GUI includes a text editor, graph plotter, molecular visualization, and text to table converter to meet various requirements of the parametrization process. It is anticipated that FFParam will facilitate wider use of CGenFF as well as promote future use of the Drude polarizable FF. 相似文献
4.
Alexandra T. P. Carvalho Ana F. S. Teixeira Maria J. Ramos 《Journal of computational chemistry》2013,34(18):1540-1548
Iron‐sulfur proteins involved in electron transfer reactions have finely tuned redox potentials, which allow them to be highly efficient and specific. Factors such as metal center solvent exposure, interaction with charged residues, or hydrogen bonds between the ligand residues and amide backbone groups have all been pointed out to cause such specific redox potentials. Here, we derived parameters compatible with the AMBER force field for the metal centers of iron‐sulfur proteins and applied them in the molecular dynamics simulations of three iron‐sulfur proteins. We used density‐functional theory (DFT) calculations and Seminario's method for the parameterization. Parameter validation was obtained by matching structures and normal frequencies at the quantum mechanics and molecular mechanics levels of theory. Having guaranteed a correct representation of the protein coordination spheres, the amide H‐bonds and the water exposure to the ligands were analyzed. Our results for the pattern of interactions with the metal centers are consistent to those obtained by nuclear magnetic resonance spectroscopy (NMR) experiments and DFT calculations, allowing the application of molecular dynamics to the study of those proteins. © 2013 Wiley Periodicals, Inc. 相似文献
5.
Letif Mones Andrew Jones Andreas W. Götz Teodoro Laino Ross C. Walker Ben Leimkuhler Gábor Csányi Noam Bernstein 《Journal of computational chemistry》2015,36(9):633-648
The implementation and validation of the adaptive buffered force (AdBF) quantum‐mechanics/molecular‐mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM‐MM interface errors by discarding forces near the boundary according to the buffered force‐mixing approach. New adaptive thermostats, needed by force‐mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl‐phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force‐mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. 相似文献
6.
Jean-Philippe Rameau Jean Devillers Jean-Paul Declercq Gérard Chauviere Jacques Perie 《Structural chemistry》1996,7(3):187-204
A structural study of three nitroimidazoles was carried out using molecular mechanics, semiempirical methods, and X-ray crystallography. Structural features which might account for the high efficiency of1 (Megazol) as an antiparasitic drug and its opposite, the inactivity of its regiomers2 and3 were examined, i.e., coplanarity of the two rings, preferred conformations, and rotational barriers around the pivot bond between the two rings. For the three compounds an antiperiplanar conformation is preferred for the N(CH3) and C-S bonds. For compounds1 and3, the rings are coplanar, with2 being somewhat twisted. The geometry obtained by molecular mechanics for compound1 is in excellent agreement with the X-ray structure, and greater confidence can be placed in this method than in semiempirical ones. Similarities observed on the LUMO positions, as well as rotational barriers lead to the conclusion that the differences in biological activity of these compounds do not rely on their ground state properties but rather on their subsequent reactions with oxygen. In addition, the calculations revealed significant structural information of a family of biological importance (nitroimidazoles) and constitute a comparative test for the MM2, AM1, and PM3 methods. 相似文献
7.
Quantum mechanical geometry optimizations and the calculation of vibrational frequencies of hexafluoroethane have been performed at the HF/6-31G*, MP2/6-31G*, CCSD/cc-pVDZ, and B3LYP/6-31G* levels. The force fields obtained were scaled. The necessity is stressed of carrying out the detailed analysis of the vibrational spectra of small reference molecules to determine sets of scale factors which are transferable to quantum mechanical force fields of large molecules for the purpose of predicting their vibrational spectra. 相似文献
8.
《Journal of computational chemistry》2017,38(22):1897-1920
A correct representation of the short‐range contributions such as exchange‐repulsion (E rep) and charge‐transfer (E ct) is essential for the soundness of separable, anisotropic polarizable molecular mechanics potentials. Within the context of the SIBFA procedure, this is aimed at by explicit representations of lone pairs in their expressions. It is necessary to account for their anisotropic behaviors upon performing not only in‐plane, but also out‐of‐plane, variations of a probe molecule or cation interacting with a target molecule or molecular fragment. Thus, E rep and E ct have to reproduce satisfactorily the corresponding anisotropies of their quantum chemical (QC) counterparts. A significant improvement of the out‐of‐plane dependencies was enabled when the sp2 and sp localized lone‐pairs are, even though to a limited extent, delocalized on both sides of the plane, above and below the atom bearer but at the closely similar angles as the in‐plane lone pair. We report calibration and validation tests on a series of monoligated complexes of a probe Zn(II) cation with several biochemically relevant ligands. Validations are then performed on several polyligated Zn(II) complexes found in the recognition sites of Zn‐metalloproteins. Such calibrations and validations are extended to representative monoligated and polyligated complexes of Mg(II) and Ca(II). It is emphasized that the calibration of all three cations was for each ΔE contribution done on a small training set bearing on a limited number of representative N , O , and S monoligated complexes. Owing to the separable nature of ΔE , a secure transferability is enabled to a diversity of polyligated complexes. For these the relative errors with respect to the target ΔE (QC) values are generally < 3%. Overall, the article proposes a full set of benchmarks that could be useful for force field developers. © 2017 Wiley Periodicals, Inc. 相似文献
9.
Combined quantum mechanics/molecular mechanics molecular dynamics simulations have been carried out to study the cleavage of the carbon–chlorine bond in 1,2-dichloroethane catalysed by haloalkane dehalogenase from Xanthobacter Autotrophicus GJ10. The process has been compared with an adequate counterpart in aqueous solution, the nucleophilic attack of acetate anion on 1,2-dichloroethane. Within the limitations of the model, mainly due to the use of a semiempirical Hamiltonian, our results reproduce the magnitude and characteristics of the catalytic effect. Comparisons of the enzymatic and in solution potentials of mean force reveal that, irrespective of the reference state, the enzyme shows a larger affinity for the transition state. The origin of this increased affinity is found in the differences in the electrostatic pattern created by the environment in aqueous solution and in the enzyme.Proceedings of the 11th International Congress of Quantum Chemistry satellite meeting in honor of Jean-Louis Rivail 相似文献
10.
Dr. João T. S. Coimbra Dr. Rui P. P. Neves Prof. Dr. Ana V. Cunha Prof. Dr. Maria J. Ramos Prof. Dr. Pedro A. Fernandes 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(42):e202201066
The influence of the dynamical flexibility of enzymes on reaction mechanisms is a cornerstone in biological sciences. In this study, we aim to 1) study the convergence of the activation free energy by using the first step of the reaction catalysed by HIV-1 protease as a case study, and 2) provide further evidence for a mechanistic divergence in this enzyme, as two different reaction pathways were seen to contribute to this step. We used quantum mechanics/molecular mechanics molecular dynamics simulations, on four different initial conformations that led to different barriers in a previous study. Despite the sampling, the four activation free energies still spanned a range of 5.0 kcal ⋅ mol−1. Furthermore, the new simulations did confirm the occurrence of an unusual mechanistic divergence, with two different mechanistic pathways displaying equivalent barriers. An active-site water molecule is proposed to influence the mechanistic pathway. 相似文献
11.
Alexander V. Vorontsov Panagiotis G. Smirniotis 《International journal of quantum chemistry》2019,119(5):e25806
Formation of oxygen vacancies (VO) is an important step of many catalytic reactions following the Mars van Krevelen mechanism. High rate of oxidation is associated with low energy of VO formation while high selectivity requires an optimal energy of VO formation. In the present computational study, enthalpy of VO formation (ΔHOVF) is studied in a decahedral anatase nanoparticle (TiO2)121(H2O)6 using PM6 method. ΔHOVF shows large variations for oxygen atoms in different locations on facets, edges and vertices. VO are much more stable in the (101) facet compared to the (001) facet, while internal VO are more stable for (101) but equally stable for (001) facet compared to surface vacancies on average. Comparison with literature DFT methods results reveals good consistency and high computational efficiency of the PM6 method for vacancies formation energy. Pm6 also correctly predicts admixture states of the Ti3+ within the band gap, but absolute values of electronic band gap and position of admixture states is overestimated and needs scaling factors. 相似文献
12.
We used molecular dynamics simulation and free energy perturbation (FEP) methods to investigate the hydride-ion transfer step in the mechanism for the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a novel substrate by the enzyme dihydrofolate reductase (DHFR). The system is represented by a coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1 semiempirical molecular orbital method for the reacting substrate and NADPH cofactor fragments, the AMBER force field for DHFR, and the TIP3P model for solvent water. The FEP calculations were performed for a number of choices for the QM system. The substrate, 8-methylpterin, was treated quantum mechanically in all the calculations, while the larger cofactor molecule was partitioned into various QM and MM regions with the addition of “link” atoms (F, CH3, and H). Calculations were also carried out with the entire NADPH molecule treated by QM. The free energies of reaction and the net charges on the NADPH fragments were used to determine the most appropriate QM/MM model. The hydride-ion transfer was also carried out over several FEP pathways, and the QM and QM/MM component free energies thus calculated were found to be state functions (i.e., independent of pathway). A ca. 10 kcal/mol increase in free energy for the hydride-ion transfer with an activation barrier of ca. 30 kcal/mol was calculated. The increase in free energy on the hydride-ion transfer arose largely from the QM/MM component. Analysis of the QM/MM energy components suggests that, although a number of charged residues may contribute to the free energy change through long-range electrostatic interactions, the only interaction that can account for the 10 kcal/mol increase in free energy is the hydrogen bond between the carboxylate side chain of Glu30 (avian DHFR) and the activated (protonated) substrate. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 977–988, 1998 相似文献
13.
The Quantum‐to‐molecular mechanics method (Q2MM) for converting quantum mechanical transition states (TSs) to molecular mechanical minima has been modified to allow a fit to the “natural” reaction mode eigenvalue. The resulting force field gives an improved representation of the energy curvature at the TS, but can potentially give false responses to steric interactions. Ways to address this problem while staying close to the “natural” TS force field are discussed. © 2014 Wiley Periodicals, Inc. 相似文献
14.
Alain Cartier David Brown Bernard Maigret Sandrine Boschi-Muller Sophie Rahuel-Clermont Guy Branlant 《Theoretical chemistry accounts》1999,101(1-3):241-245
In the framework of a theoretical approach to the relationship between structure and reactivity of the catalytic centers
of enzymes, glyceraldehyde-3 phosphate dehydrogenase (GAPDH) has been chosen as a model enzyme. In GAPDH, the proximity of
His176 increases the reactivity of Cys149 at neutral pH; however, its presence alone is not sufficient to explain the reactivity of the catalytic Cys. In order to
determine which other interactions play an important role, a study of the geometric and electronic structure of the catalytic
site has been made using a hybrid quantum mechanics/molecular mechanics local self-consistent field method. This allows the
computation of the electronic properties of amino acid residues in subsystems influenced by other parts of the macromolecule.
The quantum subsystem was centered on the Cys149 residue of GAPDH. The structures of GAPDH taken from the crystallographic database did not include hydrogen atoms and these
had to be added taking into account the fact that, in the active site, His176 has three tautomeric forms: δ-His protonated, ε-His protonated and His+. The results presented here suggest that the most stable His…Cys system in GAPDH is a strongly hydrogen-bonded Cys149
−/His176
+ ion pair.
Received: 24 March 1998 / Accepted: 3 September 1998 / Published online: 23 November 1998 相似文献
15.
16.
17.
18.
The35Cl NQR frequencies of a series of RC-Cl compounds were calculated by the AM1 and CNDO/2 methods in the Townes-Dailey approximation. It was shown that neither of these methods can be directly used for the quantitative prediction of NQR frequencies, and their use in the correlation approach is only possible in narrow series. The AM1 method gives better results for saturated compounds.Institute of Organic and Physical Chemistry, Kazan' Scientific Center, Russian Academy of Sciences, 420083 Kazan'. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 1078–1082, May, 1992. 相似文献
19.
Methodology is discussed for mixed ab initio quantum mechanics/molecular mechanics modeling of systems where the quantum mechanics (QM) and molecular mechanics (MM) regions are within the same molecule. The ab initio QM calculations are at the restricted Hartree–Fock level using the pseudospectral method of the Jaguar program while the MM part is treated with the OPLS force fields implemented in the IMPACT program. The interface between the QM and MM regions, in particular, is elaborated upon, as it is dealt with by “breaking” bonds at the boundaries and using Boys-localized orbitals found from model molecules in place of the bonds. These orbitals are kept frozen during QM calculations. Results from tests of the method to find relative conformational energies and geometries of alanine dipeptides and alanine tetrapeptides are presented along with comparisons to pure QM and pure MM calculations. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1468–1494, 1999 相似文献
20.
György G. Ferenczy 《Journal of computational chemistry》2013,34(10):862-869
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009 , 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self‐consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree–Fock–Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self‐consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave‐function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. © 2013 Wiley Periodicals, Inc. 相似文献