首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New group 10 metalloorganic complexes are proposed as the basis of new catalysts for the formation of carbon‐phosphorous bonds. Density functional theory (DFT) is applied, using multiple DFT functionals, to model molecular geometry as well as electron density distribution in the highest occupied molecular orbitals (HOMOs) expected to carry out a reductive catalytic cycle. DFT/M06 analysis predicts a robust planar geometry, regardless of alteration of major components. Precursors for rapid catalyst generation should begin with an electron‐withdrawing monodentate ligand. Palladium and platinum catalysts have lower chemical hardness, but the electron distribution in the HOMO of the nickel‐based catalyst is preferred for reductive catalytic mechanisms. Both electron density and chemical hardness, however, are affected by the choice of metal ion and the composition of the monodentate ligand bound to it. Group 10 metalloorganic complexes are modeled as precursors for generating new catalysts for a minimally wasteful method of forming bonds commonly found in biochemically active compounds. Suitable precursors have an accessible metal center, as well as significant the HOMO/LUMO involvement at the metal center. All complexes studied offer similar geometries, but precursor transformation into catalyst depends on the electron‐withdrawing ligand being exchanged. Catalyst turn over number is predicted to depend primarily on the central metal. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
A computational study of the interaction half‐sandwich metal fragments (metal = Re/W, electron count = d6), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N‐heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta‐GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron‐withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
本研究以苯酚…苯酚、苯酚…苯、苯酚…二苯醚、苯酚…喹啉和苯甲酸…苯甲酸为对象,采用色散校正的密度泛函理论分别研究褐煤中自缔合OH、OH-π、OH-醚O、OH-N和COOH-COOH之间形成的氢键。此外,还研究了氢键供体中取代基(CH3-、CH3O-、OH-、NH2-、COOH-和NO2-)对氢键的影响。对上述复合物进行了几何优化,并计算了能量、Mulliken电荷分布及振动频率。从优化的结构中可以看出上述复合物之间都存在氢键,所有复合物中O-H键键长都比苯酚中自由羟基的长,这表明这些复合物之间存在相互作用。其中,羧酸…羧酸复合物中O-H键的键长最长。此外,通过Mulliken电荷分布可看出上述复合物之间存在电荷转移。基于振动频率分析,所有的O-H键伸缩振动都发生了红移,尤其是羧酸…羧酸和苯酚…喹啉复合物,这可为煤中羟基振动的红外光谱分析提供依据。根据键能不同氢键强度按以下顺序依次递减:COOH-COOH>OH-N > 自缔合OH≈OH-醚O > OH-π,这与振动频率的分析结果一致。此外,不同取代基对氢键作用的影响不同。  相似文献   

4.
Novel Ni(II) complexes of 2‐(1H–benzimidazol‐2‐yl)‐phenol derivatives (HLx: x  =  1–5; C1–C5 ) have been synthesized and characterized. In the mononuclear complexes, the ligands were coordinated as bidentate, via one imine nitrogen and the phenolate oxygen atoms. The structures of the compounds were confirmed on the basis of FT‐IR, UV–Vis, 1H‐, 13C–NMR, inductively coupled plasma and elemental analyses (C, H and N). The purity of these compounds was ascertained by melting point (m.p.) and thin‐layer chromatography. The geometry optimization and vibrational frequency calculations of the compounds were performed using Gaussian 09 program with B3LYP/TZVP level of theory. All Ni(II) complexes were activated with diethylaluminum chloride (Et2AlCl), so that C2 showed the highest activity [6600 kg mol?1 (Ni) h?1], where the ligand contains a chlorine substituent. Oligomers obtained from the complexes consist mainly of dimer and trimer, and also exhibit high selectivity for linear 1‐butene and 1‐hexene. Both the steric and electronic effects of coordinative ligands affect the catalytic activity and the properties of the catalytic products.  相似文献   

5.
Reported here is a density functional theory study on the ability of Ni‐substituted iron‐dependent cysteine dioxygenase (CDO) to catalyze the oxidation of cysteine to cysteine sulfinic acid. The first steps of the commonly accepted mechanism for CDO, the O2 activation mechanism, suggests the binding of O2 to the metal ion (where redox isomerism takes place converting O2 to ) followed by the attack of the distal oxygen atom on the cysteine sulfur—in line with most previous evidence. An alternative mechanism entailing the attack of the cysteine sulfur on the proximal oxygen atom of the dioxygen moiety to form a persulfenate intermediate without any redox exchange between the metal ion and the O2 ligand, is supported by an X‐ray crystal structure showing a CDO with a bound cysteine persulfenate, and also supported by data on the oxidation of thiols catalyzed by Ni(II) compounds. Our results show that the O2 activation mechanism with a Ni‐substituted active site follows the same pattern as native CDOs albeit with much higher energy barriers for the formation of the intermediates suggesting that the reaction might not be biologically feasible. Conversely, the immediate cleavage of the persulfenate S O bond in the alternative mechanism suggests that cysteine persulfenate might not be a true intermediate in catalytic cycle of CDOs.  相似文献   

6.
7.
Density functional theory calculations predict a new lower energy route for the formation of the desired interligand addition product from the reaction between ethylene and nickel bis(dithiolene). The new route involves the initial binding of ethylene along the nickel–sulfur bond. The barrier heights for adding ethylene along this bond for the neutral and anionic nickel complexes are compared to each other as well as to a previously published previous mechanism. Selected structural parameters of the studied species have been analyzed to highlight the structural change on specific reactions. It was found that the ethylene/nickel bis‐dithiolene reaction occurs preferably via the nickel–sulfur bond of the neutral species, forming a complex which then rearranges to a desired interligand adduct via a low barrier. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Ever since the first synthesis of La@C82 and U@C28, there has been a growing interest in the study of endohedral metallofullerenes (EMFs) because of their great potential in various applications. Here we design a novel heteronuclear EMF (U‐Gd)@C60, by using density functional theory (DFT), which shows an encapsulation energy of about ?5.53 eV, comparable to that of U2@C60, La2@C80, and Lu2@C76. (U‐Gd)@C60 is found to have a surprising twofold, single‐electron U?Gd bond that results from the strong nanoconfinement of the fullerene, dominated by uranium′s 5f and 6d and gadolinium′s 5d atomic orbitals. The ground state shows an 11‐et high spin state, and the net spins distributed on the U‐pole carbons are relatively scattered, while they are highly concentrated on the Gd‐pole carbons. The exceptional electronic characteristics of this novel EMF, containing both uranium and gadolinium atoms encapsulated, might prove useful for future applications in nuclear energy and biomedicine.  相似文献   

10.
The reaction of the N‐thiophosphorylated thiourea (HOCH2)(Me)2CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L‐1,5‐S,S′)2] ? 0.5 (n‐C6H14) or pale green blocks of the trans square‐planar complex trans‐[Ni(L‐1,5‐S,S′)2]. The former complex is stabilized by homopolar dihydrogen C?H???H?C interactions formed by n‐hexane solvent molecules with the [Ni(L‐1,5‐S,S′)2] unit. Furthermore, the dispersion‐dominated C?H??? H?C interactions are, together with other noncovalent interactions (C?H???N, C?H???Ni, C?H???S), responsible for pseudotetrahedral coordination around the NiII center in [Ni(L ‐1,5‐S,S′)2] ? 0.5 (n‐C6H14).  相似文献   

11.
Exploratory variational pseudopotential density functional calculations are performed for the electronic properties of many‐electron systems in the 3D cartesian coordinate grid (CCG). The atom‐centered localized gaussian basis set, electronic density, and the two‐body potentials are set up in the 3D cubic box. The classical Hartree potential is calculated accurately and efficiently through a Fourier convolution technique. As a first step, simple local density functionals of homogeneous electron gas are used for the exchange‐correlation potential, while Hay‐Wadt‐type effective core potentials are employed to eliminate the core electrons. No auxiliary basis set is invoked. Preliminary illustrative calculations on total energies, individual energy components, eigenvalues, potential energy curves, ionization energies, and atomization energies of a set of 12 molecules show excellent agreement with the corresponding reference values of atom‐centered grid as well as the grid‐free calculation. Results for three atoms are also given. Combination of CCG and the convolution procedure used for classical Coulomb potential can provide reasonably accurate and reliable results for many‐electron systems. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

12.
13.
A mechanistic study was performed on the Rh‐catalyzed stereoselective C?C/C?H activation of tert‐cyclobutanols. The present study corroborated the previous proposal that the reaction occurs by metalation, β‐C elimination, 1,4‐Rh transfer, C?O insertion, and a final catalyst‐regeneration step. The rate‐determining step was found to be the 1,4‐Rh transfer step, whereas the stereoselectivity‐determining step did not correspond to any of the aforementioned steps. It was found that both the thermodynamic stability of the product of the β‐C elimination and the kinetic feasibility of the 1,4‐Rh transfer and C?O insertion steps made important contributions. In other words, three steps (i.e., β‐C elimination, 1,4‐Rh transfer, and C?O insertion) were found to be important in determining the configurations of the two quaternary stereocenters.  相似文献   

14.
The present contribution assesses the performance of several popular and accurate density functionals, namely B3LYP, BP86, M06, MN12L, mPWPW91, PBE0, and TPSSh toward manganese‐based coordination complexes. These compounds show promising properties toward application to catalytic water oxidation. Although manganese with N‐ and O‐biding ligands tends to give rise to high spin complexes, the results show that BP86, mPWPW91, and specially MN12L, tend to yield low‐spin complexes. The usage of these functionals for such compounds is, thus, discouraged. All the functionals considered deliver accurate geometries. The present results show, however, that B3LYP delivers geometries deviating from experimental values when compared to the other functionals of the set. M06, PBE0, and TPSSh deliver geometries of similar accuracy, PBE0 outstanding slightly with respect to the other two. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Density functional theory calculations are performed to study the addition mechanism of e‐rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open‐cage fullerenes, which may prove helpful in designing new switchable fullerene systems.  相似文献   

16.
An unprecedented rhodium(III)‐catalyzed regioselective redox‐neutral annulation reaction of 1‐naphthylamine N‐oxides with diazo compounds was developed to afford various biologically important 1H‐benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by‐products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp3)? H bond and C(sp2)? H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)‐catalyzed coupling of readily available tertiary aniline N‐oxides with α‐diazomalonates was also developed under external oxidant‐free conditions to access various aminomandelic acid derivatives by an O‐atom‐transfer reaction.  相似文献   

17.
The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium‐doped vanadium cluster cations CeV2O7+ are generated by laser ablation, mass‐selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time‐of‐flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen‐atom transfer , 2) double oxygen‐atom transfer , and 3) C?C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7+, which gives rise to C?C bond cleavage of ethene. Neither CexOy± nor VxOy± alone possess the necessary topological and electronic properties to bring about such a reaction.  相似文献   

18.
Thermodynamic stability of metal–aminoacid complexes in water is discussed in terms of the Gibbs free energy of water–ligand exchange processes, and the electronic stabilizing factors thoroughly investigated by means of 1‐electron and 2‐electron density properties. Hexacoordinated complexes formed between iron cations and glycine molecules acting as monodentate or bidentate ligands have been chosen as targets for the current study. Results agree with experimental findings, and complexes formed with bidentate ligands are found to be more stable than those formed with monodentate ones. The larger the number of the coordinated glycine molecules the more stable is the complex. Fe(III) complexes are more stable than Fe(II) ones, but differences are small and the Fe3+/Fe2+ exchange process appears to be energetically feasible for these complexes. Formation of the second glycine–iron interaction involving the amino nitrogen in the bidentate ligands is enthalpycally unfavorable but takes place due to the large entropy rise of the process. The larger stability of Fe(III) complexes is due however to the balance between energetic and solvation terms, which is favorable to these complexes. Electron density properties account satisfactorily for the electronic energy changes along the complex formation in terms of ligand–metal electron transfer and covalent bond orders. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

19.
Density functional theory (DFT) was combined with solution of the Poisson equation for continuum dielectric media to compute accurate redox potentials for several mononuclear transition metal complexes (TMCs) involving iron, manganese, and nickel. Progress was achieved by altering the B3LYP DFT functional (B4(XQ3)LYP-approach) and supplementing it with an empirical correction term G(X) having three additional adjustable parameters, which is applied after the quantum-chemical DFT computations. This method was used to compute 58 redox potentials of 48 different TMCs involving different pairs of redox states solvated in both protic and aprotic solvents. For the 58 redox potentials the root mean square deviation (RMSD) from experimental values is 65 mV. The reliability of the present approach is also supported by the observation that the energetic order of the spin multiplicities of the electronic ground states is fulfilled for all studied TMCs, if the influence from the solvent is considered as well.  相似文献   

20.
We report a computational study on 3d transition‐metal (Cr, Mn, Fe, and Co) carbodiimides in Li‐ and Na‐ion batteries. The obtained cell voltages semi‐quantitatively fit the experiments, highlighting the practicality of PBE+U as an approach for modeling the conversion‐reaction mechanism of the FeNCN archetype with lithium and sodium. Also, the calculated voltage profiles agree satisfactorily with experiment both for full (Li‐ion battery) and partial (Na‐ion battery) discharge, even though experimental atomistic knowledge is missing up to now. Moreover, we rationalize the structural preference of intermediate ternaries and their characteristic lowering in the voltage profile using chemical‐bonding and Mulliken‐charge analysis. The formation of such ternary intermediates for the lithiation of FeNCN and the contribution of at least one ternary intermediate is also confirmed experimentally. This theoretical approach, aided by experimental findings, supports the atomistic exploration of electrode materials governed by conversion reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号