首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The structure analysis of so‐called 9CaO·4CrO3·Cr2O3 proved it to be the title compound, decacalcium hexakis[chromate(V)] chromate(VI), with the simultaneous presence of unusual chromium oxidation states. The structure determination was carried out on a crystal that had inversion twinning. The CrVIO4 tetrahedron is situated on a threefold axis and is disordered over two possible orientations that share three O atoms, while the CrVO4 tetrahedra are in general positions and are ordered. The charge is balanced by Ca2+ cations, one of which is located on a threefold axis. The Ca2+ ions are coordinated by six, seven or eight O atoms. The compound is a significant phase in the CaO–CrOx system and its formation reduces the refractoriness of calcium‐rich compositions in an oxidizing atmosphere.  相似文献   

2.
A5–4xZrxZr(PO4)3 (A=Na, K;0≤x≤1.25), Na1-xCd0.5xZr2(PO4)3 (0≤x≤1), Na5–xCd0.5xZr(PO4)3 (0≤x≤4) compositions which belong to the NZP structural family were synthesized using the sol-gel method. The lattice thermal expansion of members of these rows were determined up to 600°C by high-temperature X-ray diffractometry. The axial thermal expansion coefficients change from -5.8·10-6to 7.5·10-6 °C-1a) and from 2.6·10–6 to 22·10–6 °C-1c). These results, in addition to those for other NZP compounds allow us to explain their low thermal expansion. The mechanism can be attributed to strongly bonded three-dimensional network structure, the existence of structural holes capable to damp some of the thermal vibrations and anisotropyin the thermal expansion of the lattice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The compounds Eu(OH)(CrO4) and Y(OH)(CrO4) were obtained under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction analysis. They are isostructural and crystallize in the monoclinic system, space group P21/n (no. 14) with lattice parameters a = 8.278(1) Å, b = 11.400(2) Å, c = 8.393(1) Å, β = 93.76(2)°, V = 790.3(2) Å3, Z = 4, d = 4.79 g · cm–3 for Eu(OH)(CrO4) and a = 8.151(1) Å, b = 11.362(2) Å, c = 8.285(1) Å, β = 94.23(1)°, V = 765.2(2) Å3, Z = 4, d = 3.85 g · cm–3 for Y(OH)(CrO4). The [EuO8] polyhedra form infinite double chains along the a direction, which are connected by common edges and corners. These double chains are related together in the two other directions by the [CrO4]2– tetrahedra to form a three‐dimensional network in which channels appear parallel to the [100] direction. We examine the structural evolution, as a function of the Ln3+ ionic radius, in the series Ln(OH)(CrO4) compounds (with Ln = Nd, Eu, Gd, Tb, Er, Yb) and Y(OH)(CrO4). To determine the best coordination number of each lanthanide and yttrium ions, different calculations of bond valence sum were realized.  相似文献   

4.
The thermal behaviour of CrO3 on heating up to 600°C in dynamic atmospheres of air, N2 and H2 was examined by thermogravimetry (TG), differential thermal analysis (DTA), IR spectroscopy and diffuse reflectance spectroscopy (DRS). The results revealed three major thermal events, depending to different extents on the surrounding atmosphere: (i) melting of CrO3 near 215°C (independent of the atmosphere), (ii) decomposition into Cr2(CrO4)3 at 340–360°C (insignificantly dependent), and (iii) decomposition of the chromate into Cr2O3 at 415–490°C (significantly dependent). The decomposition CrO3 → Cr2(CrO4)3 is largely thermal and involves exothermic deoxygenation and polymerization reactions, whereas the decomposition Cr2(CrO4)3 → Cr2O3 involves endothermic reductive deoxygenation reactions in air (or N2) which are greatly accelerated and rendered exothermic in the presence of H2. TG measurements as a function of heating rate (2–50°C min−1) demonstrated the acceleratory role of H2, which extended to the formation of Cr(II) species. This could sustain a mechanism whereby H2 molecules are considered to chemisorb dissociatively, and then spillover to induce the reduction. DTA measurements as a function of the heating rate (2–50°C min−1) helped in the derivation of non-isothermal kinetic parameters strongly supportive of the mechanism envisaged. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The crystal structure of cesium diberyllium phosphate hydrophosphate Cs[Be2(PO4)(PO4H)] obtained hydrothermally is analyzed. Unit cell parameters are: a = 4.8860(5) ?, b = 10.7330(11) ?, c = 13.0061(15) ?, α = 92.540(10)°, β = 92.451(9)°, γ = 90.948(9)°, space group P . In the structural motif consisting of PO4 and BeO4 tetrahedra, Be,P two-link chains and ribbons are distinguished, typical of a short a-translation of ≈4.9 ?. The presence of ternary and terminal O ligands along with bridging ones determines the term interrupted super framework. The group of two Be tetrahedra with a common edge is detected for beryllium phosphates for the first time. Original Russian Text Copyright ? 2009 by V. V. Bakakin, Yu. V. Seretkin, and S. P. Demin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 2, pp. 369–373, March–April, 2009.  相似文献   

6.
The first sodium uranyl chromate, Na4[(UO2)(CrO4)3], has been obtained by high‐temperature solid‐state reaction. The structure (triclinic, P1¯, Z = 2, a = 7.1548(3), b = 8.4420(3), c = 11.5102(5)Å, α = 80.203(1)°, β = 79.310(1)°, γ = 70.415(1)° V = 639.24(4)Å3 ) has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1 = 0.024 [calculated on the basis of 4374 unique observed reflections (‖Fo‖ 4σF)]. The structure is based on chains of composition [(UO2)(CrO4)3] that are parallel to [1¯01]. The chains contain UrO5 pentagonal bipyramids (Ur = Uranyl) that share all equatorial corners with CrO4 tetrahedra. Cr(1)O4 and Cr(3)O4 tetrahedra bridge between two adjacent UrO5 bipyramids, whereas Cr(2)O4 tetrahedra share one corner with one UrO5 bipyramid each. The [(UO2)(CrO4)3] chains are planar and oriented parallel to (313). The Na+ cations provide linkage of the chains in the structure.  相似文献   

7.
Two novel isopropylamine‐templated uranyl chromates, [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] ( 1 ) and [(CH3)2CHNH3]2[(UO2)2(CrO4)3(H2O)] ( 2 ) were prepared by hydrothermal method at 100 °C. The compounds were characterized by electron microprobe analysis and X‐ray diffraction crystal structure analysis [ 1 : trigonal, P31m, a = 9.646(4), c = 8.469(4) Å, V = 682.4(5) Å3; 2 : monoclinic, P21/c, a = 11.309(3), b = 11.465(3), c = 17.055(5) Å, β = 99.150(6)°, V = 2183.2(11) Å3]. The structure of 1 is based upon trimers of uranyl bipyramids interlinked by CrO4 tetrahedra to form [(UO2)3(CrO4)2O(OH)3]3– layers, whereas, in the structure of 2 , UO7 and UO6(H2O) pentagonal bipyramids are linked through CrO4 tetrahedra into the [(UO2)2(CrO4)3(H2O)]2– layers. The structures show many similarities to related uranyl selenate compounds, thus providing additional data on similarities and differences between uranyl sulfates, chromates, selenates, and molybdates.  相似文献   

8.
Sodium indium(III) chromate(VI) dihydrate, NaIn(CrO4)2·2H2O, synthesized from an aqueous solution at room temperature, is the first indium(III) member of the large family of compounds with kröhnkite [Na2CuII(SVIO4)2·2H2O]‐type chains. The crystal structure is based on infinite octa­hedral–tetra­hedral [In(CrO4)2(H2O)2] chains along [010], linked via charge‐balancing Na+ cations. The slightly distorted InO4(H2O)2 octa­hedra are characterized by a mean In—O distance of 2.125 Å. The CrO4 tetra­hedra are strongly distorted (mean Cr—O = 1.641 Å). The Na atom shows an octa­hedral coordination, unprecedented among compounds with kröhnkite‐type chains. The NaO6 octa­hedra share opposite edges with the InO4(H2O)2 octa­hedra to form infinite [001] chains. The hydrogen bonds are of medium strength. NaIn(CrO4)2·2H2O belongs to the structural type F2 in the classification of Fleck, Kolitsch & Hertweck [Z. Kristallogr. (2002), 217 , 435–443], and is isotypic with KAl(CrO4)2·2H2O and MFe(CrO4)2·2H2O (M = K, Tl or NH4). All atoms are in special positions except one O atom.  相似文献   

9.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

10.
The structures of tripotassium digallium tris(phosphate), K3Ga2(PO4)3, and trisodium gallium bis(phosphate), Na3Ga(PO4)2, have different irregular one‐dimensional alkali ion‐containing channels along the a axis of the orthorhombic and triclinic unit cells, respectively. The anionic subsystems consist of vortex‐linked PO4 tetrahedra and GaO4 tetrahedra or GaO5 trigonal bipyramids in the first and second structure, respectively.  相似文献   

11.
The reduction of chromate ion by l-cysteine in near-neutral aqueous solutions was studied by u.v.–vis spectroscopy. The rate constants for the formation, decomposition and redox degradation of a CrVI thioester intermediate (both in the absence and in the presence of dissolved O2) were determined by the use of a nonlinear least-squares regression to fit the experimental data to a double-exponential integrated rate law. Superoxochromium(III), CrOO2+, could be observed as a long-lived intermediate by the use of u.v. difference spectroscopy (peaks at 238 and 292 nm). The effects of several reaction variables on the yield of the intermediate CrOO2+ were studied. A striking result was that the yield decreased as the concentration of dissolved O2 increased. In the presence of phosphate buffer, the yield showed a maximum at pH 6.8. Formation of CrOO2+ was suppressed by the additives Mn2+, H2O2, d-ribose, 2-deoxy-d-ribose and a high concentration of Ce3+, whereas a low concentration of the latter enhanced its appearance. A novel mechanism for the formation of CrOO2+ from CrVI and l-cysteine (involving the intramolecular formation of an O–O bond) is proposed, and the possible routes for the decay of this intermediate are discussed. This novel mechanism might offer new insights into the redox chemistry of chromate ions.  相似文献   

12.
Single crystals of a new bismuth chromate, Bi8(CrO4)O11, were prepared by hydrothermal reaction of NaBiO3·nH2O in K2CrO4 solution. The bismuth chromate crystallizes in the monoclinic space group P21/m with a=9.657(3), b=11.934(3), c=13.868(2)Å and β=104.14(1)°, Z=4 and the final R factors are R=0.038 and Rw=0.041 for 3541 unique reflections. The crystal structure has a slab built up by (CrO4)2− tetrahedra and distorted bismuth polyhedra which are five-fold pyramids, six-fold trigonal prisms and octahedra. The distance of lone pair from nucleus for bismuth atoms ranges from 0.29 to 1.12 Å, depending on the coordination environment. Bi8(CrO4)O11 decomposes to Bi14CrO24 and a small amount of an unknown phase at 796 °C.  相似文献   

13.
Three compounds ASb2(SO4)2(PO4) (A = H3O+, K, Rb) were obtained from the reactions of Sb2O3, A2CO3 (A = Li, Rb) or K2SO4 and NH4H2PO4 in H2SO4 (98 %) at 220–250 °C. Their structures were determined by single‐crystal X‐ray diffraction. All compounds crystallize in the triclinic space group P$\bar{1}$ (no.2) and are isostructural. The crystal structures consist of two‐dimensional 2[Sb2(SO4)2(PO4)] anionic layers and alkali cations, which are located between anionic layers. The anionic layers are composed of [SbO4] ψ‐trigonal bipyramids, [SbO5] ψ octahedra, [SO4] tetrahedra, and [PO4] tetrahedra. All compounds are characterized by solid state UV/Vis/NIR diffuse reflectance spectra, FT‐IR spectroscopy, and Raman spectroscopy.  相似文献   

14.
A mixed-valent molybdenotungstophosphate, Nax(Mo, W)2O3(PO4)2 (x 0.75) has been isolated for the first time. It crystallizes in the space group P 21/m with a = 7.200(1) Å, b = 6.369(1) Å, c = 9.123(1) Å, and β = 106.29(1)°. Its structure consists of M2PO13 units built up of two M O6 octahedra (M = Mo, W) and one PO4 tetrahedron sharing their apices as already observed in several molybdenum phosphates. These units share their apices with PO4 tetrahedra forming [M2P2O15] chains running along . The host lattice [(Mo, W)2P2O11] can be described by the assemblage of such chains or by the assemblage of [MPO8] chains running along , in which one PO4 tetrahedron alternates with one MO6 octahedron. The tridimensional framework [Mo, WP2O11] delimits tunnels running along , occupied by sodium with two kinds of coordination, 6 and 5. The distribution of the different species, in the octahedral sites according to the formulation Na0.75(MoVI0.42WVI0.58)M1 (MoV0.75WVI0.25)2O3(PO4)2, is discussed.  相似文献   

15.
The enthalpies of the solution of MZr2(PO4)3(M=Na, K, Rb or Cs) compounds have been measured by the help of a differential automatic isothermal Calvet calorimeter and the standard enthalpies of formation have been derived. The temperature dependencies of the standard heat capacity of the samples of crystalline NaZr2(PO4)3 and CsZr2(PO4)3 were studied between 7 and 340 K in an automatic adiabatic vacuum calorimeter. The main thermodynamic functions H 0(T)–H 0(0), S 0(T) andG 0(T)–H 0(0) have been determined. The Gibbs energies of formation of the NaZr2(PO4)3and CsZr2(PO4)3 at 298.15 K were calculated on the basis of these experimental data and the enthalpy of formation data. Qualitative explanations for the results observed were presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
17.
Dark-red single crystals of HgCr2O7 were grown by reacting HgO and CrO3 in excess at 200°C for four days. The crystal structure (space group P32, Z = 3, a = 7.2389(10), c = 9.461(2) ?, 1363 structure factors, 57 parameters, R[F 2>2σ(F 2)] = 0.0369, wR(F 2 all) = 0.0693) was determined from a crystal twinned by merohedry according to (110). It consists of nearly linear HgO2 units ( [`(d)]{\bar {d}} (Hg–O) = 2.02 ?) and dichromate units that are linked into infinite chains ‘O3Cr–O–CrO3–Hg–O3Cr–O–CrO3’ running parallel to the c-axis. Six additional Hg–O contacts between 2.73 and 2.96 ? stabilise the structural arrangement. The dichromate anion exhibits a staggered conformation with a bent Cr–O–Cr bridging angle of 140.7(6)°. Upon heating above 300°C, HgCr2O7 decomposes in a two-step mechanism to Cr2O3. The title compound was additionally characterised by vibrational spectroscopy.  相似文献   

18.
(OLi2Ca4)3[ReN4]4, a Nitridorhenate(VI) Oxide Black single crystals of (OLi2Ca4)3[ReN4]4 were prepared from the elements (molar ratio Li : Ca : Re = 6 : 1 : 1) by reaction with molecular nitrogen at 900 °C; oxygen content results from a leak in the gas supply. The nitridorhenate(VI)‐oxide is an isotype of (OLi2Ca4)3[MN4]4 (M = MoVI, WVI). These compounds are obtained under similar reaction conditions in the presence of small amounts of oxygen containing impurities (Li‐/Ca‐hydroxides). The crystal structure of (OLi2Ca4)3[ReN4]4 was determined by single crystal methods (cubic; I43d (# 220); a = 1315.88(9) pm; Z = 4) and can be derived from the Th3P4 type structure by hierarchical replacements: Th ≙ (OLi2Ca4)8+‐tetragonal bipyramids and P ≙ [ReVIN4]6–‐tetrahedra.  相似文献   

19.
The reactions of the Pd/ZrO2/SO4-catalyzed oxidation of ethylene, propene, and but-1-ene in a 0.1–1.5 M solution of perchloric acid with iron(III) aqua ions to carbonyl compounds, viz., acetaldehyde, acetone, and methyl ethyl ketone, respectively, were studied. The formation of palladium nanoparticles (5 nm) in solution on contact of the initial heterogeneous Pd/ZrO2/SO4 catalyst with perchloric acid was proved by transmission electron microscopy. The palladium nanoparticles are assumed to play the key role in olefin oxidation with the iron(III) aqua ions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 627–632, April, 2006.  相似文献   

20.
Summary. Dark-red single crystals of HgCr2O7 were grown by reacting HgO and CrO3 in excess at 200°C for four days. The crystal structure (space group P32, Z = 3, a = 7.2389(10), c = 9.461(2) ?, 1363 structure factors, 57 parameters, R[F 2>2σ(F 2)] = 0.0369, wR(F 2 all) = 0.0693) was determined from a crystal twinned by merohedry according to (110). It consists of nearly linear HgO2 units ( (Hg–O) = 2.02 ?) and dichromate units that are linked into infinite chains ‘O3Cr–O–CrO3–Hg–O3Cr–O–CrO3’ running parallel to the c-axis. Six additional Hg–O contacts between 2.73 and 2.96 ? stabilise the structural arrangement. The dichromate anion exhibits a staggered conformation with a bent Cr–O–Cr bridging angle of 140.7(6)°. Upon heating above 300°C, HgCr2O7 decomposes in a two-step mechanism to Cr2O3. The title compound was additionally characterised by vibrational spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号