首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circuit models for gain-switched quantum well laser diodes are developed and simulated using the circuit analysis program SPICE2. Effects of cavity length and number of wells on the output pulse shape are analysed. Picosecond pulses of 7 and 2 ps full-width at half-maximum (FWHM) are observed, corresponding to second and third quantized level transitions, respectively. A remarkable reduction in the output pulse width observed for the third quantized level transition, demonstrates the significance of higher sub-band transitions for ultrashort pulse generation.  相似文献   

2.
This paper reports some recent results of time-resolved studies of the carrier dynamics in GaAs/GaAlAs quantum well structures with picosecond and subpicosecond time resolution. These experiments have provided insight into carrier trapping, energy relaxation, and carrier recombination processes. Carrier trapping into the quantum well layers is very efficient and determines the decay of the GaAlAs luminescence even for 1 μm thick cladding layers. Carrier recombination is enhanced particularly at low temperatures. This effect has been attributed to the increased overlap of electron and hole (exciton) wavefunctions in the quasi-two-dimensional carrier system.  相似文献   

3.
Hou L  Haji M  Marsh JH  Bryce AC 《Optics letters》2012,37(5):773-775
We report femtosecond pulses from a passive C-band two-section AlGaInAs/InP mode-locked laser with a monolithically integrated passive waveguide made by quantum well intermixing. Without any external pulse compression, Lorentzian pulses are generated at a repetition frequency of ~38 GHz with 490 fs pulse duration, which is, to the best of our knowledge, the shortest pulse from any directly electrically pumped quantum well semiconductor mode-locked laser. The mode-locking range is relatively large and the ultranarrow pulse width is very stable over a broad range of driving conditions.  相似文献   

4.
5.
马青玉  邱媛媛  黄蓓  章东  龚秀芬 《中国物理 B》2010,19(9):94302-094302
The difference-frequency (DF) ultrasound generated by using parametric effect promises to improve detection depth owing to its low attenuation, which is beneficial for deep tissue imaging. With ultrasound contrast agents infusion, the harmonic components scattered from the microbubbles, including DF, can be generated due to the nonlinear vibration. A theoretical study on the DF generation from microbubbles under the dual-frequency excitation is proposed in formula based on the solution of the RPNNP equation. The optimisation of the DF generation is discussed associated with the applied acoustic pressure, frequency, and the microbubble size. Experiments are performed to validate the theoretical predictions by using a dual-frequency signal to excite microbubbles. Both the numerical and experimental results demonstrate that the optimised DF ultrasound can be achieved as the difference frequency is close to the resonance frequency of the microbubble and improve the contrast-to-tissue ratio in imaging.  相似文献   

6.
The reflectance, transmittance, and absorbance of a symmetric electromagnetic pulse with a carrier frequency close to the frequency of direct interband transitions in a quantum well are calculated. The energy levels in the quantum well are assumed to be discrete, and two closely spaced excited levels are taken into account. The theory holds true for quantum wells of an arbitrary width at which the quantum confinement is retained. The calculations are performed with due regard for the difference between the refractive indices of the quantum well and the barriers. In this case, there appears an additional reflection from the quantum-well boundaries. The additional reflection results in a substantial change in the shape of the reflected pulse as compared to that characteristic of a homogeneous medium. The reflection from the quantum-well boundaries disappears at specific ratios between the carrier frequency of the exciting pulse and the quantum-well width.  相似文献   

7.
8.
The reflection, transmission, and absorption of a symmetric electromagnetic pulse whose carrier frequency is close to the frequency of the interband transition in a quantum well are calculated. The energy levels in the quantum well are assumed to be discrete, and one excited level is taken into account. Consideration is given to the case of a sufficiently wide quantum well when the pulse wavelength corresponding to the carrier frequency is comparable to the quantum well width and when allowance should be made for the dependence of the matrix element of the interband transition on the photon wave vector. The calculations are performed with due regard for the difference between the refractive indices of the material of the quantum well and the barrier at an arbitrary ratio of the reciprocal radiative to nonradiative lifetimes of the excited level of the electronic system. It is demonstrated that the inclusion of the spatial dispersion and the difference in the refractive indices most strongly affects the reflection of the electromagnetic pulse, because the reflection due to interband transitions in the quantum well is accompanied by an additional reflection from the quantum well boundaries. Compared to the previously considered model, the most radical changes in the reflection are observed in the case when the reciprocal nonradiative lifetime of the excited state is substantially longer than the reciprocal radiative lifetime.  相似文献   

9.
陈基根  曾思良  杨玉军  程超 《物理学报》2012,61(12):123201-123201
采用多周期的800 nm钛宝石激光组合1600 nm中红外脉 冲辐照氦离子产生高次谐波发射功率谱. 相对于单色场情形, 谐波谱出现明显的双平台结构, 且在第二平台区出现了光滑的连续辐射谱, 其转化效率相对于第一平台低了约两个数量级. 通过附加脉宽为1 fs的27次谐波脉冲到双色激光场的特定时域, 可以控制电子电离在半个光学周期内迅速提升, 获得了由单一短量子路径贡献的连续辐射谱, 使得第二平台区谐波的转化效率相对于组合场情形增强4个数量级, 且连续谱的频谱范围从第二平台区扩展到第一平台区, 叠加该连续谱190次到285次谐波生成了脉宽为29 as的强、短孤立脉冲.  相似文献   

10.
本文数值计算了脉宽为半个光学周期的超短脉冲在不同载波包络相位下的谐波波谱,通过比较谐波波谱截止频率与电子通过主要路径可获得的最大动能的差异,研究了超短脉冲谐波辐射过程中的量子路径。结果显示,超短脉冲谐波辐射过程中电子获得动能的量子路径偏离主要量子路径,而且该偏离效应受载波包络相位的影响。  相似文献   

11.
本文数值计算了脉宽为半个光学周期的超短脉冲在不同载波包络相位下的谐波波谱,通过比较谐波波谱截止频率与电子通过主要路径可获得的最大动能的差异,研究了超短脉冲谐波辐射过程中的量子路径。结果显示,超短脉冲谐波辐射过程中电子获得动能的量子路径偏离主要量子路径,而且该偏离效应受载波包络相位的影响。  相似文献   

12.
Efficient schemes are proposed for generation of picosecond pulses in the mid/far-IR and THz ranges through intracavity nonlinear mixing of fields generated in two-color injection heterolasers, operating in the mode-locking regime at room temperature. It is shown that these schemes make it possible to increase the peak lasing power by a factor of about 100.  相似文献   

13.
A theory for the response of a 2D two-level system to irradiation by a symmetric light pulse is developed. Under certain conditions, such an electron system approximates an ideal solitary quantum well in a zero field or a strong magnetic field H perpendicular to the plane of the well. One of the energy levels is the ground state of the system, while the other is a discrete excited state with energy ?ω0, which may be an exciton level for H=0 or any level in a strong magnetic field. It is assumed that the effect of other energy levels and the interaction of light with the lattice can be ignored. General formulas are derived for the time dependence of the dimensionless “coefficients” of the reflection ?(t), absorption A(t), and transmission ?(t) for a symmetric light pulse. It is shown that the ?(t), A(t), and ?(t) time dependences have singular points of three types. At points t 0 of the first type, A(t 0)=T(t 0)=0 and total reflection takes place. It is shown that for γr?γ, where γr and γ are the radiative and nonradiative reciprocal lifetimes, respectively, for the upper energy level of the two-level system, the amplitude and shape of the transmitted pulse can change significantly under the resonance ωl0. In the case of a long pulse, when γlr, the pulse is reflected almost completely. (The quantity γl characterizes the duration of the exciting pulse.) In the case of an intermediate pulse duration γlr, the reflection, absorption, and transmission are comparable in value and the shape of the transmitted pulse differs considerably from the shape of the exciting pulse: the transmitted pulse has two peaks due to the existence of the point t 0 of total reflection, at which the transmission is zero. If the carrier frequency ωl of light differs from the resonance frequency ω0, the oscillating ?(t), A(t), and ?(t) time dependences are observed at the frequency Δω=ωl0. Oscillations can be observed most conveniently for Δω?γl. The position of the singular points of total absorption, reflection, and transparency is studied for the case when ωl differs from the resonance frequency.  相似文献   

14.
The paper deals with the theoretical investigation of ultrafast-pulse evolution in a semiconductor quantum well (QW). Semiconductor Bloch equations are used to obtain the polarization induced in the medium due to incident Gaussian electromagnetic beam. The partial differential equation with finite group velocity dispersion (GVD) is then used to analyze the effect of induced polarization on the pulse. The role of GVD on femtosecond pulse evolution in GaAs/AlGaAs waveguide is studied, giving due consideration to the intensity dependent group velocity of the medium.  相似文献   

15.
We theoretically investigate the high-order harmonic generation in helium atom driven by a nonlinear chirped laser pulse with few-cycle duration. By employing appropriate chirp to the driving pulse, an efficient electric field waveform of controlling quantum path for ultra-broadband supercontinuous harmonics is realized, and then an isolated sub-50 as pulse with bandwidth of 739 eV can be significantly obtained.  相似文献   

16.
Laser-induced quantum coherence in a semiconductor quantum well   总被引:2,自引:0,他引:2  
The phenomenon of electromagnetically induced quantum coherence is demonstrated between three confined electron subband levels in a quantum well which are almost equally spaced in energy. Applying a strong coupling field, two-photon resonant with the 1-3 intersubband transition, produces a pronounced narrow transparency feature in the 1-2 absorption line. This result can be understood in terms of all three states being simultaneously driven into "phase-locked" quantum coherence by a single coupling field. We describe the effect theoretically with a density matrix method and an adapted linear response theory.  相似文献   

17.
邢雁  王志平  王旭 《中国物理 B》2009,18(5):1935-1941
The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the framework of the dielectric continuum approximation. The electron--phonon interaction Hamiltonian for QDQW structures is obtained and the exchange interaction between impurity and LO-phonons is discussed. The binding energy and the trapping energy of the bound polaron in CdS/HgS QDQW structures are calculated. The numerical results reveal that there exist three branches of eigenfrequencies of surface optical vibration in the CdS/HgS QDQW structure. It is also shown that the binding energy and the trapping energy increase as the inner radius of the QDQW structure decreases, with the outer radius fixed, and the trapping energy takes a major part of the binding energy when the inner radius is very small.  相似文献   

18.
Transport measurements have been carried out on a 10 nm n-type PbTe/Pb0.9Eu0.1Te quantum well at millikelvin temperatures. The Hall and longitudinal resistances are measured in a Van der Pauw geometry under high magnetic fields up to 23 T. A robust signature of the integer quantum Hall effect is observed without any sign of parasitic parallel conduction. The unconventional sequence of filling factors associated with the integer quantum Hall effect is discussed in terms of the occupancy of multiple valleys.  相似文献   

19.
Observations of d-band quantum well states are made for atomically uniform Ag films on Fe(100) using angle-resolved photoemission. For increasing film thicknesses, quantum well peaks within the small 4d bandwidth multiply rapidly and merge into a bulklike spectrum at approximately 25 monolayers. An analysis of the peak positions yields a highly accurate bulk band structure of Ag. A very narrow d-band peak width (13 meV) is observed at the band top.  相似文献   

20.
The effect of structural inhomogeneities in multi-quantum-well lasers caused by composition and well width fluctuations on the line-shape and gain of the lasers is discussed based on gaussian and uniform distribution models. Quantitative results of wide applicability are deduced. The results show that the structural inhomogeneities will reduce the gain and broaden the lineshape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号