首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure. The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst.  相似文献   

2.
碳纳米管在样品前处理中的应用   总被引:1,自引:0,他引:1  
张素玲  杜卓  李攻科 《化学通报》2011,74(3):201-208
碳纳米管是一维碳基纳米材料,具有独特的管状结构、良好的化学稳定性、热稳定性和高比表面积.近年来,碳纳米管在有机小分子、金属离子和生物大分子分离富集方面得到了广泛的应用.本文综述了碳纳米管及功能化碳纳米管在固相萃取、固相微萃取、中空纤维膜保护固相微萃取和液膜萃取等样品前处理技术中的应用.  相似文献   

3.
A new catalyst consisting of ionic liquid (IL)‐functionalized carbon nanotubes (CNTs) obtained through 1,3‐dipolar cycloaddition support‐enhanced electrocatalytic Pd nanoparticles (Pd@IL(Cl?)‐CNTs) was successfully fabricated and applied in direct ethanol alkaline fuel cells. The morphology, structure, component and stability of Pd@IL(Cl?)‐CNTs were systematic characterized by transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), Raman spectra, thermogravimetric analysis (TGA) and X‐ray diffraction (XRD). The new catalyst exhibited higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd nanoparticles (NPs) immobilized on CNTs (Pd@CNTs), which was ascribed to the effects of the IL, larger electrochemically active surface area (ECSA), and greater processing performance. Cyclic voltammograms (CVs) at various scan rates illustrated that the oxidation behaviors of ethanol at all electrodes were controlled by diffusion processes. The investigation of the different counteranions demonstrated that the performance of the IL‐CNTs hybrid material was profoundly influenced by the subtly varied structures of the IL moiety. All the results indicated that the Pd@IL(Cl?)‐CNTs catalyst is an efficient anode catalyst, which has potential applications in direct ethanol fuel cells and the strategy of IL functionalization of CNTs could be available to prepare other carbonaceous carrier supports to enhance the dispersivity, stability, and catalytic performance of metal NPs as well.  相似文献   

4.
对碳纳米管(CNTs)进行酸化处理, 采用乳化交联法制备CNTs/壳聚糖(CS)复合微球, 在其表面诱导羟基磷灰石仿生合成, 研究了CNTs对复合微球仿生矿化的影响, 并与纯CS微球的仿生矿化进行了对比. 利用扫描电子显微镜(SEM)、 X射线衍射仪(XRD)、 溶胀率和含水率测试等考察了复合微球矿化前后的形貌特征、 物相结构及稳定性. 结果表明, 在相同时间下, CNTs/CS复合微球表面纳米羟基磷灰石的形成能力明显优于纯CS微球, 且形态稳定性更高. 细胞实验结果表明, 与MG63细胞共培养7 d时, 矿化复合微球细胞增殖明显.  相似文献   

5.
A series of nanocatalysts consisting of acid treated carbon nanotubes (CNTs) with different diameters (8-15, 20-30, 30-50, >50 nm) supporting platinum (Pt) nanoparticles (Pt/CNTs) were synthesized via a microwave-assisted ethylene glycol method. The as-synthesized catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Their catalytic performances in the oxygen reduction reaction (ORR) were evaluated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The experimental results showed that the diameter of the CNTs influences the particle size, loading, and dispersion of Pt NPs. Furthermore, the Pt/CNTs having different CNT diameters displayed different catalytic activities in the ORR. The catalyst Pt/CNT8, which was prepared by using CNTs with diameters ranging between 8-15 nm as the support, exhibited the highest Pt loading, catalytic activity, and stability in the ORR. The mass activity of Pt/CNT8 was determined to be 0.188 A·mg-1 at 0.9 V, which is folds higher than that of the commercially available JM Pt/C catalyst. After testing the stability for 5000 potential cycles, the negative shift (~7 mV) of the half-wave potential for Pt/CNT8 was found to be significantly lesser than that for the JM Pt/C catalyst (~32 mV), indicating superior catalytic stability.  相似文献   

6.
低热固相法制备纳米MnO2/CNT超电容复合电极的循环稳定性   总被引:1,自引:0,他引:1  
为了改善纳米MnO2超级电容器电极的充放电循环稳定性,以Mn(OAc)2·4H2O、NH4HCO3和碳纳米管(CNT)为原料,采用低热固相反应得到前驱体,再经焙烧和酸处理,制备了一系列CNT含量不同的纳米MnO2/CNT复合电极材料,并用X射线衍射(XRD)、透射电镜(TEM)和Brunauer-Emmett-Teller(BET)比表面积测定方法对其进行了表征.XRD分析结果表明,复合材料中的MnO2为纳米γ-MnO2.研究了复合电极在1 mol·L-1 LiOH电解质中的电化学性能,并与不含CNT的纯纳米MnO2电极进行了比较.结果表明,含CNTs为10%(w,质最分数,下同)和20%的MnO2/CNT复合电极的循环稳定性远优于纯纳米MnO2电极的循环稳定性,其中含10%CNTs的MnO2/CNT复合电极不仪具有良好的循环稳定性,而且在1000 mA·g-1高倍率充放电条件下仍具有200 F·g-1的高比电容.  相似文献   

7.
A novel cancer drug targeting carrier (CdSe@Fe3O4/CNTs) was prepared by using chitosan to encapsulate magnetic carbon nanotubes (Fe3O4/CNTs), and then combining Fe3O4/CNTs to CdSe with amidolink. In this system, chitosan was used as a bridge to link CdSe and magnetic CNTs, which improved the stability of the entirety; CdSe was linked up with chitosan using covalent bond steadily and kept a good fluorescence. A mechanism scheme was proposed to illustrate the formation process of the nanocomposites. The as-synthesized samples were characterized by transmission electron microscopy (TEM), X-ray diffractometry (XRD), vibration sample magnetometry (VSM) and fluorescence spectra. Results showed that the novel carrier has the potential to meet the specific needs in cancer in vivo imaging and targeted cancer therapy.  相似文献   

8.
ZrO2-carbon nanotube (CNT) composites have been successfully synthesized via decomposition of Zr(NO3)4.5H2O in supercritical carbon dioxide-ethanol solution with dispersed CNTs at relatively low temperatures. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analyses. It was demonstrated that CNTs were fully coated with an amorphous ZrO2 layer, and the coating layer was nominally complete and uniform. In addition, the thickness of the coating sheath could be readily controlled by tuning the Zr(NO3)4.5H2O/CNTs ratio used. Furthermore, the chemiluminescent sensor prepared from ZrO2-carbon nanotube composites exhibited dramatic sensitivity as well as high stability and selectivity to ethanol.  相似文献   

9.
Flame retardant mixtures of carbon nanotubes (CNTs) and intumescent flame retardant (IFR) were embedded in polypropylene (PP) to investigate what will happen if the additives exhibit two different flame retardation mechanisms. TEM tests showed that CNTs dispersed homogenously in PP matrix without any visible agglomeration. The effects of CNTs on thermal stability and flammability of PP were investigated by thermogravimetry (TG) and cone calorimetry tests, respectively. Results indicated that the introduction of CNTs only enhanced thermal stability of materials in a certain temperature range, but caused a severe deterioration of flame retardancy due to the interaction of the network structure and the intumescent carbonaceous char. Furthermore, conditions for an intumescent flame retardation system to behave with high efficiency were also discussed by a secondary combustion test.  相似文献   

10.
Thin polyetherimide (PEI) films containing 0.1–3 wt.% multi-walled carbon nanotubes (MWCNTs), have been prepared from three types of MWCNTs, namely pristine, oxidized and polymerized ionic liquid (PIL) functionalized CNTs. Oxidized and PIL functionalized CNTs (CNT–PIL) showed better dispersion in the matrix compared to pristine CNTs. For CNT–PIL, alignment of CNTs has been observed in the matrix. Regardless of the type of CNTs, their incorporation led to an increased thermal stability of the polymer matrix. Dynamic mechanical analysis showed that storage modulus increased by up to 25% (3 wt.% CNT–PIL) and an increase in the height of the damping peaks (tan δ). The addition of CNTs did not have any significant influence on the tensile properties and Tg of the polymer, and the electrical conductivity did not decrease in the case of modified CNTs.  相似文献   

11.
A nickel nanoparticle (NiNP)/carbon nanotube (CNT)-modified carbon fiber microelectrode (NiNPs/CNTs/CFME) was fabricated using a two-step electroless plating/chemical vapor deposition method. The morphology of the NiNPs/CNTs composite structure was characterized by scanning electron microscopy, and its elemental composition was characterized by an energy dispersive spectrometer. The electrochemical behavior of the NiNPs/CNTs/CFME in aqueous alkaline solutions of insulin was investigated by cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy in sequence. CV curves show that the NiNPs/CNTs/CFME displays a high oxidation peak current, a fast electron transfer rate, and good electrocatalytic activity towards insulin, compared to a bare CFME and a pure NiNP-modified CFME. In the chronoamperometry tests, the NiNPs/CNTs/CFME demonstrates an excellent analytical performance in detecting low concentrations of insulin, including good sensitivity (1.11 nA μM?1) and a low detection limit (270 nM). Moreover, this microelectrode exhibits great reproducibility in successive potential cycling and satisfactory long-term stability after storage at room temperature for approximately 8 weeks.  相似文献   

12.
龙俊英  马兰  贺德华 《物理化学学报》2010,26(10):2719-2725
以醇凝胶-氮气热处理方法制备的ZrO2、碳纳米管(CNTs)及介孔分子筛SBA-15作为载体,采用化学还原法制备了负载型非晶态Co-B催化剂,利用粉末X射线衍射(XRD)、氮气吸附等温线、透射电子显微镜(TEM)、电感耦合等离子体-原子发射光谱(ICP-AES)以及X射线光电子能谱(XPS)等对催化剂进行了表征.以1-辛烯的氢甲酰化为目标反应,考察了负载型非晶态Co-B催化剂在氢甲酰化反应中的性能及循环使用效果.表征结果显示,以NaBH4为还原剂制备的负载型Co-B催化剂上的Co-B为非晶态,负载Co-B组分对载体的晶相结构没有影响.反应结果表明,在1-辛烯的氢甲酰化反应中,负载型非晶态Co-B催化剂都显示较高的初始活性.随着循环次数的增加,三种催化剂的活性下降,但下降幅度有所不同,Co-B/CNTs和Co-B/SBA-15的循环使用稳定性高于Co-B/ZrO2.  相似文献   

13.
Carbon Nanotubes (CNTs) is among the most promising nanofiller materials that could be used for enhancing the properties of fiberglass/epoxy laminates for vehicle industries with less CO2 emission (the key player in the climate change). However, usually the commercialized CNTs are supplied in the shape of heavily entangled tubes what leads to random dispersion of CNTs in the polymer matrix and decrease in their performance, especially at industrial scale. Within this frame, the chemical functionalization process was used in the present research to avoid this problem and to modify the surface properties of CNTs at the same time, thus improving compatibility and solubility of CNTs in epoxy solutions. Afterwards, probe sonicator (pre-dispersion), ultrasonic path (main dispersion), mechanical mixer (mixed CNTs/Epoxy solutions with hardener), and vacuum infiltration (to remove air bubbles) were used to disperse functionalized CNTs with different concentrations (in the range 0.05–0.4 wt%) in the epoxy-hardener solutions. Then, vacuum-assisted resin transfer technique followed by curing process were used to prepare 4 layers-fiberglass/CNTs/epoxy panels. The mechanical and impact properties of the prepared panels were tested according to ASTM D7025 and ISO 6603-2 standards, respectively. Also, thermal behavior of the panels was investigated using thermogravimetric (TG-DTG). Finally, the environmental performance in terms of greenhouse gas emission (GHGE) was evaluated according to ISO-14040 standard, taking the resulting strength and changes in density into account. The results showed that 0.35 wt% of FCNTs were enough to improve the strength of panels by ~60%, compared to pure sample. Which means that weight structure of vehicles can decrease by 23%. Also, fuel consumption and GHGE can decrease significantly by 16% and ~26%, respectively. In addition, thermal stability and energy impact absorption at the same concentration of CNTs were improved by 5% and 31%, respectively.  相似文献   

14.
In order to improve the heat transfer process by using nanofluids, different nanoparticles and base fluids have been studied. In this work, stability and effect of aging and temperature on the thermal conductivity of CNTs-ethylene glycol (EG) nanofluids were investigated. Chemical functionalisation was used to oxidise the surface of CNTs. The functionalised CNTs were used to prepare the nanofluids by a two-step method. The stability of nanofluids was measured by UV-vis spectroscopy and the results showed that the nanofluids had a good stability over several days. Immediately after nanofluid preparation not too much increase was observed for thermal conductivity but the nanofluid aging had a great influence on the improvement of the thermal conductivity, as after 65 days, about 50% increase was observed. The increase has been attributed to forming an ordered nanolayer of EG molecules around the CNTs. Also no significant temperature dependence of thermal conductivity was observed up to 50°C possibly due to the lack of temperature dependence of CNTs Brownian motions.  相似文献   

15.
In this work, high storage modulus and high water stability of chitosan was prepared by incorporating chitosan-grafted carbon nanotubes (CNTs-g-CS). This dramatically improved mechanical property and water stability of chitosan would broaden its biochemical and electrochemical applications. The methodology adopted here by incorporating the CNTs-g-CS allowed a high amount of CNTs incorporation in chitosan without phase separations and enabled the preparations of a durable chitosan/CNTs nanocomposite-modified electrode for biosensor uses. The CNTs-g-CS was synthesized by grafting chitosan onto the carboxylated CNTs in acetic acid-added aqueous solution at 98 °C for 24 h. Thermal gravimetric analysis showed that the content of the chitosan grafts on the CNTs was about 25 wt% of the synthesized CNTs-g-CS. As compared with the ungrafted CNTs, the CNTs-g-CS exhibited a significantly improved dispersion in the chitosan matrix, as examined by optical microscopy and scanning electron microscopy, resulting in significantly improved storage modulus and water stability of the chitosan nanocomposites as revealed by dynamic mechanical analysis and water treatments data, respectively. The storage modulus was significantly up by 134% from 6.4 GPa for the pure chitosan to 15 GPa for the chitosan nanocomposite containing 40 wt% CNTs-g-CS. The water stability of the chitosan nanocomposite films was significantly up from less than 12 h for the chitosan containing various amounts of ungrafted CNTs to at least 48 h for the chitosan containing 20, 30, and 40 wt% CNTs-g-CS.  相似文献   

16.
Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.  相似文献   

17.
Nanosized carbon black (CB) was introduced into polypropylene/carbon nanotubes (PP/CNTs) nanocomposites to investigate the effect of multi‐component nanofillers on the thermal stability and flammability properties of PP. The obtained ternary nanocomposites displayed dramatically improved thermal stability compared with neat PP and PP/CNTs nanocomposites. Moreover, the flame retardancy of resultant nanocomposites was greatly improved with a significant reduction in peak heat release rate and increase of limited oxygen index value, and it was strongly dependent on the content of CB. This enhanced effect was attributed mainly to the formation of good carbon protective layers by CB and CNTs during combustion. Rheological properties further confirmed that CB played an important role on promoting the formation of crosslink network on the base of PP/CNTs system, which were also responsible for the improved thermal stability and flame retardancy of PP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, Co3O4/CNTs composite with Saqima-like secondary microstructure has been synthesized by heat treatment of CoC2O4/CNTs precursors being obtained through ultrasonication-assisted precipitation method. Through SEM, in the composites, the microstructures are composed of tightly connected nanoparticles (30–50 nm), and abundant spaces exist among nanoparticles, which can relieve the strain produced by volume effect to ensure the stability of integral structure during cycles; CNTs are dispersed in microstructures and bridge between microstructures, which can form a long-range conductive network in the composite. The electrochemical test indicates that the composite shows ultrahigh initial coulombic efficiency (ICE) of 85%, as well as excellent rate performance and cyclic stability. The high ICE is mainly ascribed to the formation of a stable solid electrolyte interphase (SEI) film only on the outer surface of microstructures. This work offers an available and general way to improve the ICE of transitional metal oxide as an anode material for LIB.  相似文献   

19.
In this paper, we reported an improved process for the preparation of PtRu/CNTs, which involves the adsorption of Pt and Ru ions on CNTs in aqueous solution and the reduction of the adsorbed Pt and Ru ions on CNTs in ethylene glycol. The surface morphology, structure, and compositions of the prepared catalyst were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive spectrometer. TEM observation showed that the particles size of the prepared PtRu alloy was in the range of 2–5 nm, XRD patterns confirmed a face-centered cubic crystal structure. The activity and stability of the prepared catalyst toward methanol oxidation were studied in 0.5 M H2SO4 + 1 M CH3OH solution by cyclic voltammetry, chronoamperometry, and chronopotentiometry. The electrochemical results showed that the prepared catalyst exhibited higher activity and stability toward methanol oxidation than commercial PtRu/C with the same loading amount of Pt and Ru.  相似文献   

20.
《Analytical letters》2012,45(7):1226-1240
In this paper, we described a novel sensor based on tiron-doped polypyrrole and carbon nanotubes (CNTs) fabricated on low resistance monolayer-modified glassy carbon electrode. First, the dodecylamine monolayer was chemically modified. Second, CNTs were controllably adsorbed onto dodecylamine. Then, tiron doped polypyrrole was electro-deposited on the CNTs film. The layer-by-layer modified electrode was sensitive to dopamine, while it made no response to even high concentration of ascorbic acid. Parameters influencing the dopamine response were optimized. High performance of the sensor was obtained, such as wide concentration range, low detection limit (3 nM), low background current, high stability, and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号