首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two generations of lipophilic pyrenyl functionalized poly(benzyl ether) dendrimers (P1 and P2) have been synthesized. The thermal properties of the two functionalized dendrimers have been investigated, and the pyrenyl group of the dendritic molecules encapsulated in the arene–ruthenium metalla‐cage, [Ru6(p‐cymene)6(tpt)2(donq)3]6+ ([ 1 ]6+) (tpt=2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine; donq=5,8‐dioxydo‐1,4‐naphthoquinonato). The host–guest properties of [P1⊂ 1 ]6+ and [P2⊂ 1 ]6+ were studied in solution by NMR and UV/Vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water‐soluble host–guest systems was evaluated on human ovarian cancer cells.  相似文献   

2.
A large cationic triangular metallo‐prism, [Ru6(p‐PriC6H4Me)6(tpt)2(dhbq)3]6+ ( 1 )6+, incorporating p‐cymene ruthenium building blocks, bridged by 2,5‐dihydroxy‐1,4‐benzoquinonato (dhbq) ligands, and connected by two 2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine (tpt) subunits, allows the permanent encapsulation of the triphenylene derivatives hexahydroxytriphenylene, C18H6(OH)6 and hexamethoxytriphenylene, C18H6(OMe)6. These two cationic carceplex systems [C18H6(OH)6⊂ 1 ]6+ and [C18H6(OMe)6⊂ 1 ]6+ have been isolated as their triflate salts. The molecular structure of these systems has been established by one‐dimensional 1H ROESY NMR experiments as well as by the single‐crystal structure analysis of [C18H6(OMe)6⊂ 1 ][O3SCF3]6.  相似文献   

3.
Three generations of pyrenyl bis-MPA dendrimers with two different end-groups, acetonide (pyr(Gn)) or alcohol (pyr(Gn-OH)) (n = 1-3), were synthesized, and the pyrenyl group of the dendritic molecules was encapsulated in the arene ruthenium metallacages, [Ru(6)(p-cymene)(6)(OO∩OO)(3)(tpt)(2)](6+) (OO∩OO = 5,8-dioxydo-1,4-naphtaquinonato (donq) [1](6+) and 6,11-dioxydo-5,12-naphtacenedionato (dotq) [2](6+); tpt =2,4,6-tri(pyridin-4-yl)-1,3,5-triazine). The host-guest properties of [guest?1](6+) and [guest?2](6+) were studied in solution by NMR and UV-vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water-soluble host-guest systems and the pyrenyl-dendrimers was evaluated on human ovarian cancer cells.  相似文献   

4.
Hexanuclear thiolato‐bridged arene ruthenium metalla‐prisms of the general formula [(p‐cymene)6Ru6(SR)6(tpt)2]6+ (R=CH2Ph, CH2C6H4ptBu, CH2CH2Ph; tpt=2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine), obtained from the dinuclear precursors [(p‐cymene)2Ru2(SR)2Cl2], AgCF3SO3 and tpt, have been isolated and fully characterised as triflate salts. The metalla‐prisms are highly cytotoxic against human ovarian cancer cells, especially towards the cisplatin‐resistant cell line A2780cisR (IC50 <0.25 μM ).  相似文献   

5.
Reaction of p‐phenylenediacetonitrile (p‐phda) with AgCF3COO afforded the coordination polymer, {[Ag2(p‐phda)2] [Ag4(CF3COO)6]}n ( 1 ), where the 1D cationic [Ag2(p‐phda)2]2+ chain acts as host and the anionic [Ag4(CF3COO)6]2– as guest molecules occupy the channel between neighboring host chains. This is a rare crystal example of AgCF3COO complex consisting of cationic complex chains and anionic guests. In addition, complex 1 exhibits luminescence at room temperature in solid state.  相似文献   

6.
Cationic (arene)ruthenium‐based tetranuclear complexes of the general formula [Ru4(η6‐p‐cymene)4(μ‐NN)2(μ‐OO∩OO)2]4+ were obtained from the dinuclear (arene)ruthenium complexes [Ru2(η6p‐cymene)2(μ‐OO∩OO)2Cl2] (p‐cymene=1‐methyl‐4‐(1‐methylethyl)benzene, OO∩OO=5,8‐dihydroxy‐1,4‐naphthoquinonato(2?), 9,10‐dihydroxy‐1,4‐anthraquinonato(2?), or 6,11‐dihydroxynaphthacene‐5,12‐dionato(2?)) by reaction with pyrazine or bipyridine linkers (NN=pyrazine, 4,4′‐bipyridine, 4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine]) in the presence of silver trifluoromethanesulfonate (CF3SO3Ag) (Scheme). All complexes 4 – 12 were isolated in good yield as CF3SO salts, and characterized by NMR and IR spectroscopy. The host–guest properties of the metallarectangles incorporating 4,4′‐bipyridine and (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers were studied in solution by means of multiple NMR experiments (1D, ROESY, and DOSY). The largest metallarectangles 10 – 12 incorporating (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers are able to host an anthracene, pyrene, perylene, or coronene molecule in their cavity, while the medium‐size metallarectangles 7 – 9 incorporating 4,4′‐bipyridine linkers are only able to encapsulate anthracene. However, out‐of‐cavity interactions are observed between these 4,4′‐bipyridine‐containing rectangles and pyrene, perylene, or coronene. In contrast, the small pyrazine‐containing metallarectangles 4 – 6 show no interaction in solution with this series of planar aromatic molecules.  相似文献   

7.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

8.
A series of iridium‐ and rhodium‐based hexanuclear organometallic cages containing 2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone, 9,10‐dihydroxy‐1,4‐anthraquinone, and 6,11‐dihydroxynaphthacene‐5,12‐dione ligands were synthesized from the self‐assembly of the corresponding molecular “clips” and 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine ligands in good yields. These organometallic cages can form inclusion systems with a wide variety of π‐donor substrates, including coronene, pyrene, [Pt(acac)2], and hexamethoxytriphenylene. The 1:1 complexation of the resulting supramolecular assemblies was confirmed by 1H NMR spectroscopy. Large complexation shifts (Δδ>1 ppm) were observed in the 1H NMR spectra of guests in the presence of cage [Cp*6M6(μ‐DHNA)3(tpt)2](OTf)6 ( 6a ; M=Ir, tpt=2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine). The formation of discrete 1:1 donor–acceptor complexes, pyrene ?6 b (M=Rh), coronene ?6 a , coronene ?6 b , and [Pt(acac)2] ?6 a was confirmed by their single‐crystal X‐ray analyses. In these systems, the most important driving force for the formation of guest–host complexes is clearly the donor–acceptor π???π stacking interaction, including charge‐transfer interactions between the electron‐donating and electron‐accepting aromatic components. These structures provide compelling evidence for the existence of strong attractive forces between the electron‐deficient triazine core and electron‐rich guest. The results presented here may provide useful guidance for designing artificial receptors for functional biomolecules.  相似文献   

9.
The straightforward self-assembly reaction of R3Sn+ and [Fe(CN)6]3? affords three-dimensional (3-D) coordination polymers [(n-Bu3Sn)2(R3Sn)Fe(CN)6] n , R = n-Bu(I) or Ph(II). The architecture of these coordination polymers is closely related to zeolite and acts as a host with wide internal cavities or channels capable of encapsulating voluminous organic compounds. Aniline derivatives acting as guest are encapsulated within the cavities of the 3-D-polymeric hosts I and II by tribochemical reaction producing host–guest supramolecular polymers. The structures and physical properties of these hosts and their host–guest systems were investigated by elemental analysis, X-ray powder diffraction, IR, UV-vis, EPR, and magnetic measurements. The morphology of these systems was examined by scanning electron microscopy (SEM). The interesting feature of these host–guest supramolecular polymers is the enhanced electrical conductivities over those of the 3-D-coordination polymeric hosts upon encapsulation of conductive polymers within their cavities.  相似文献   

10.
Despite an absence of conventional porosity, the 1D coordination polymer [Ag4(O2C(CF2)2CF3)4(TMP)3] ( 1 ; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into Ag?O bonds to yield coordination polymers [Ag4(O2C(CF2)2CF3)4(TMP)3(ROH)2] ( 1‐ROH ; R=Me, Et, iPr). The reactions are reversible single‐crystal‐to‐single‐crystal transformations. Vapour‐solid equilibria have been examined by gas‐phase IR spectroscopy (K=5.68(9)×10?5 (MeOH), 9.5(3)×10?6 (EtOH), 6.14(5)×10?5 (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two‐step reactions 1‐ROH → 1 → 2 , in which 2 is the 2D coordination polymer [Ag4(O2C(CF2)2CF3)4(TMP)2] formed by loss of TMP ligands exclusively from singly‐bridging sites. Four polymorphic forms of 1 ( 1‐ALT , 1‐AHT , 1‐BLT and 1‐BHT ; HT=high temperature, LT=low temperature) have been identified crystallographically. In situ powder X‐ray diffraction (PXRD) studies of the 1‐ROH → 1 → 2 transformations indicate the role of the HT polymorphs in these reactions. The structural relationship between polymorphs, involving changes in conformation of perfluoroalkyl chains and a change in orientation of entire polymers (A versus B forms), suggests a mechanism for the observed reactions and a pathway for guest transport within the fluorous layers. Consistent with this pathway, optical microscopy and AFM studies on single crystals of 1‐MeOH / 1‐AHT show that cracks parallel to the layers of interdigitated perfluoroalkyl chains develop during the MeOH release/uptake process.  相似文献   

11.
Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)?Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)?cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)?cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)?cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+).  相似文献   

12.
To gain insight into chiral recognition in porous materials we have prepared a family of fourth generation chiral metal–organic frameworks (MOFs) that have rigid frameworks and adaptable (flexible) pores. The previously reported parent material, [Co2(S‐mandelate)2(4,4′‐bipyridine)3](NO3)2, CMOM‐ 1S , is a modular MOF; five new variants in which counterions (BF4?, CMOM‐ 2S ) or mandelate ligands are substituted (2‐Cl, CMOM‐ 11R ; 3‐Cl, CMOM‐ 21R ; 4‐Cl, CMOM‐ 31R ; 4‐CH3, CMOM‐ 41R ) and the existing CF3SO3? variant CMOM‐ 3S are studied herein. Fine‐tuning of pore size, shape, and chemistry afforded a series of distinct host–guest binding sites with variable chiral separation properties with respect to three structural isomers of phenylpropanol. Structural analysis of the resulting crystalline sponge phases revealed that host–guest interactions, guest–guest interactions, and pore adaptability collectively determine chiral discrimination.  相似文献   

13.
A series of large cationic hexanuclear metalla-prisms, [Ru(6)(p-iPrC(6)H(4)Me)(6)(tpt)(2)(donq)(3)](6+), [Ru(6)(p-iPrC(6)H(4)Me)(6)(tpt)(2)(doaq)(3)](6+) and [Ru(6)(p-iPrC(6)H(4)Me)(6)(tpt)(2)(dotq)(3)](6+), composed of p-cymene-ruthenium building blocks bridged by OO∩OO ligands (donq=5,8-dioxido-1,4-naphthoquinonato; doaq=5,8-dioxido-1,4-anthraquinonato, dotq=6,11-dioxido-5,12-naphthacenedionato) and connected by two 2,4,6-tripyridin-4-yl-1,3,5-triazine (tpt) panels, which encapsulate the guest molecules 1-(4,6-dichloro-1,3,5-triazin-2-yl)pyrene and Pd(acac)(2), have been prepared. The host-guest properties of these water-soluble delivery systems were studied in solution by NMR and fluorescence spectroscopy, providing the stability constants (K) for these host-guest systems. Moreover, the ability of the hosts to deliver the guests into cancer cells was evaluated and the uptake mechanism studied; the rate of release of the guest molecule was found to depend on the portal size of the host.  相似文献   

14.
A new kind of podand‐based dimeric salen ligand was synthesized, and its association with potassium cations was investigated by 1H NMR spectroscopy. The corresponding CrIII–salen dimer was assembled by a supramolecular host–guest self‐assembly process and was then used as a catalyst in highly efficient and enantioselective asymmetric Henry reactions. Regulation by KBArF (BArF=[3,5‐(CF3)2C6H3]4B) led to remarkable improvements in yield (by up to 58 %) and enantioselectivity (for example, from 80 % ee to 96 % ee).  相似文献   

15.
The novel host–guest compound [Cs6Cl][Fe24Se26] (I4/mmm; a=11.0991(9), c=22.143(2) Å) was obtained by reacting Cs2Se, CsCl, Fe, and Se in closed ampoules. This is the first member of a family of compounds with unique Fe–Se topology, which consists of edge‐sharing, extended fused cubane [Fe8Se6Se8/3] blocks that host a guest complex ion, [Cs6Cl]5+. Thus Fe is tetrahedrally coordinated and divalent with strong exchange couplings, which results in an ordered antiferromagnetic state below TN=221 K. At low temperatures, a distribution of hyperfine fields in the Mössbauer spectra suggests a structural distortion or a complex spin structure. With its strong Fe–Se covalency, the compound is close to electronic itinerancy and is, therefore, prone to exhibit tunable properties.  相似文献   

16.
Trifluoromethylation of AuCl3 by using the Me3SiCF3/CsF system in THF and in the presence of [PPh4]Br proceeds with partial reduction, yielding a mixture of [PPh4][AuI(CF3)2] ( 1′ ) and [PPh4][AuIII(CF3)4] ( 2′ ) that can be adequately separated. An efficient method for the high‐yield synthesis of 1′ is also described. The molecular geometries of the homoleptic anions [AuI(CF3)2]? and [AuIII(CF3)4]? in their salts 1′ and [NBu4][AuIII(CF3)4] ( 2 ) have been established by X‐ray diffraction methods. Compound 1′ oxidatively adds halogens, X2, furnishing [PPh4][AuIII(CF3)2X2] (X=Cl ( 3 ), Br ( 4 ), I ( 5 )), which are assigned a trans stereochemistry. Attempts to activate C? F bonds in the gold(III) derivative 2′ by reaction with Lewis acids under different conditions either failed or only gave complex mixtures. On the other hand, treatment of the gold(I) derivative 1′ with BF3?OEt2 under mild conditions cleanly afforded the carbonyl derivative [AuI(CF3)(CO)] ( 6 ), which can be isolated as an extremely moisture‐sensitive light yellow crystalline solid. In the solid state, each linear F3C‐Au‐CO molecule weakly interacts with three symmetry‐related neighbors yielding an extended 3D network of aurophilic interactions (Au???Au=345.9(1) pm). The high $\tilde \nu $ CO value (2194 cm?1 in the solid state and 2180 cm?1 in CH2Cl2 solution) denotes that CO is acting as a mainly σ‐donor ligand and confirms the role of the CF3 group as an electron‐withdrawing ligand in organometallic chemistry. Compound 6 can be considered as a convenient synthon of the “AuI(CF3)” fragment, as it reacts with a number of neutral ligands L, giving rise to the corresponding [AuI(CF3)(L)] compounds (L=CNtBu ( 7 ), NCMe ( 8 ), py ( 9 ), tht ( 10 )).  相似文献   

17.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
在干燥氩气氛下, 用等摩尔的高纯无水GaCl3和[C2mim][Cl](氯化1-甲基-3-乙基咪唑)直接搅拌混合, 制备了淡黄色透明的的离子液体[C2mim][GaCl4] (1-ethyl-3-methylimidazolium chlorogallate) . 在298.15 K下, 利用具有恒温环境的溶解反应热量计, 测定了这种离子液体的不同浓度摩尔溶解焓 . 针对[C2mim][GaCl4]溶解于水后即分解的特点, 在Pitzer电解质溶液理论基础上, 提出了确定这种离子液体标准摩尔溶解焓的新方法, 得到了[C2mim][GaCl4]在水中的标准摩尔溶解焓, =-132 kJ•mol-1, 以及Pitzer焓参数组合: =-0.1373076和 =0.3484209. 借助热力学循环和Glasser离子液体晶格能理论, 用Ga3+, Cl-和[C2mim]—的离子水化焓数据以及本文得到的[C2mim][GaCl4]标准摩尔溶解焓, 估算了配离子4Cl-(g)解离成Ga3+(g)和4Cl-(g)的解离焓ΔHdis([GaCl4]-)≈5855 kJ•mol-1. 这个结果揭示了离子液体[C2mim][GaCl4]的标准摩尔溶解焓绝对值并不很大的原因, 即是很大的离子水化焓被很大的[GaCl4]-(g)的解离焓相互抵消了.  相似文献   

19.
A convenient and efficient method for the synthesis of pyrazolo[3,4‐d]pyrimidin‐4‐ones via heterocyclization reaction of 5‐amino‐1H‐pyrazole‐4‐carboxamides with triethyl orthoesters using two Br?nsted‐acidic ionic liquids, 3‐methyl‐1‐(4‐sulfonic acid)butylimidazolium hydrogen sulfate [MIM+(CH2)4SO3H][HSO4?] or N‐(4‐sulfonic acid)butyl triethylammonium hydrogen sulfate [Et3N+(CH2)4SO3H][HSO4?], as efficient homogeneous catalysts under solvent‐free conditions is described.  相似文献   

20.
The structures of two new sulfate complexes are reported, namely di‐μ‐sulfato‐κ3O,O′:O′′‐bis{aqua­[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine‐κ3N1,N2,N6]­cadmium(II)} tetra­hydrate, [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O, and di‐μ‐sulfato‐κ2O:O′‐bis­[(2,2′:6′,2′′‐ter­pyridine‐κ3N1,N1′,N1′′)­zinc(II)] dihydrate, [Cd2(SO4)2(C15H11N3)2]·2H2O, the former being the first report of a Cd(tpt) complex [tpt is 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]. Both compounds crystallize in the space group P and form centrosymmetric dimeric structures. In the cadmium complex, the metal center is heptacoordinated in the form of a pentagonal bipyramid, while in the zinc complex, the metal ion is in a fivefold environment, the coordination geometry being intermediate between square pyramidal and trigonal bipyramidal. Packing of the dimers leads to the formation of planar structures strongly linked by hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号