首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystals of the bis(tert‐butyl)silylene (DTBS) derivatives of the tartaric acids were synthesized from D ‐, L ‐, rac‐, and meso‐tartaric acid and DTBS bis(trifluoromethanesulfonate): two polymorphs of Si2tBu4(L ‐Tart1,2;3,4H–4) (L ‐ 1a and L ‐ 1b ), the mirror image of the denser modification (D ‐ 1b ) as well as the racemate ( 2 ), and the meso analogue Si2tBu4(meso‐Tart1,3;2,4H–4) ( 3 ). The structures were determined by single‐crystal X‐ray diffraction. The threo‐configured D ‐ and L ‐ (and rac‐) tartrates were coordinated by two tBu2Si units forming five‐membered chelate rings, whereas the erythro‐configured meso‐tartrate formed six‐membered chelate rings. The new compounds were analyzed by NMR techniques, including 29Si NMR spectroscopy, and single‐crystal X‐ray crystallography.  相似文献   

2.
tBu2P–PLi–PtBu2·2THF reacts with [cis‐(Et3P)2MCl2] (M = Ni, Pd) yielding [(1,2‐η‐tBu2P=P–PtBu2)Ni(PEt3)Cl] and [(1,2‐η‐tBu2P=P–PtBu2)Pd(PEt3)Cl], respectively. tBu2P– PLi–PtBu2 undergoes an oxidation process and the tBu2P–P–PtBu2 ligand adopts in the products the structure of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphino)diphosphenium cation with a short P–P bond. Surprisingly, the reaction of tBu2P–PLi–PtBu2·2THF with [cis‐(Et3P)2PtCl2] does not yield [(1,2‐η‐tBu2P=P–PtBu2)Pt(PEt3)Cl].  相似文献   

3.
The X‐ray structures of dibenzo[ce]‐1,2‐dithiine, dibenzo[ce]‐1,2‐dithiine‐5,5‐dioxide, diben‐ zo[ce]‐1,2‐dithiine‐5,5,6‐trioxide, and dibenzo[ce]‐1, 2‐dithiine‐5,5,6,6‐tetraoxide are reported and compared with the related “constrained'' naphthalene deri‐ vatives. The S‐S distances vary upon oxidation of the S centers in the order S‐S < SO‐S > SO2‐S < SO2‐SO > SO2‐SO2 i.e. the most oxidized sulfur atoms do not lead to the longest bond lengths. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:346–351, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20101  相似文献   

4.
[(tBu)2P]2P? P[P(tBu)2]2 from LiP[P(tBu)2]2 and 1,2-Dibromomethane. Pyrolysis of tBu2P? P?P(Br)tBu2 All products of the reaction of [tBu2P]2PLi 1 with 1,2-dibromoethane 2 were investigated. Already at ?70°C tBu2P? P?P(Br)tBu2 3 as main product and [tBu2P]2PBr 4 are formed. Only with an excess of 1 also [tBu2P]P? P[P(tBu)2]2 5 is obtained. Warming of a pure solution of 3 in toluene from ?70°C to ?30°C leads to 4 , and at 20°C tBu2PBr and the cyclophosphanes P4[P(tBu)2]4 and P3[P(tBu)2]3 are observed. 5 does not result from 3 , it's rather a byproduct from the reaction of 1 with 4 . Also the ylide 3 and 1 yields 5 .  相似文献   

5.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIV. Formation and Structure of [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2] [cp′Mo(CO)2]2 (cp′ = C5H4tBu) reacts with tBu2P–P=P(Me)tBu2 to yield the compound [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2], which crystallizes in the space group P212121 with a = 1202.42(7), b = 1552.48(8), and c = 1765.3(1) pm.  相似文献   

6.
On irradiation (λ=350 nm) in the presence of 1,1‐dimethoxyethene, naphthalene‐1,2‐dionemonoacetals 1 regioselectively afford 1,1,4,4‐tetramethoxycyclobuta[a]naphthalen‐3‐ones 3 . Sequential deprotection of these bis‐acetals first lead to 1,1‐dimethoxycyclobuta[a]naphthalene‐3,4‐diones 4 and then to cyclobuta[a]naphthalene‐1,3,4‐triones 6 , which, in turn, are converted into (3,4‐dihydro‐3,4‐dioxonaphthalen‐2‐yl)acetates 7 by treatment with SiO2/MeOH/air.  相似文献   

7.
In the oxidative process of the supersilanide anion [SitBu3]?, radical species are generated. The continuous wave (cw)‐EPR spectrum of the reaction solution of Na[SitBu3] with O2 revealed a signal, which could be characterized as disupersilylperoxo radical anion [tBu3SiOOSitBu3]?? affected by sodium ions though ion‐pair formation. A mechanism is suggested for the oxidative process of supersilanide, which in a further step can be helpful in a better understanding of the oxidation process of isoelectronic phosphanes.  相似文献   

8.
Contributions to the Chemistry of Phosphorus. 244. The First Oxatetraphospholane, (PBut)4O Under suitable conditions, the reaction ot tri‐tertbutylcyclotriphosphane, (PBut)3, with di‐tert‐butylperoxide gives rise to a mixture of 2,3,4,5‐tetra‐tert‐butyl‐1,2,3,4,5‐oxatetraphospholane, (PBut)4O ( 1 ), and 1,2‐di‐tert‐butyl‐1,2‐di‐tert‐butoxidiphosphane, [But(ButO)P]2 ( 2 ). Both compounds have been isolated in the pure state. The oxatetraphospholane 1 is a constitutional isomer of 1,2,3,4‐Tetra‐tert‐butyl‐1‐oxocyclotetraphosphane, which has been reported recently [1]. The corresponding reaction of tetra‐tert‐butylcyclotetraphosphane furnishes only small amounts of 1 because of the kinetic stability of (PBut)4. The diphosphane 2 is presumably a secondary product of primarily formed oxocyclotetraphosphanes (PBut)4O1–4. The NMR parameters of 1 and 2 are reported and discussed.  相似文献   

9.
The silyl amide Et2SiCl‐NLi‐SitBu3 can be cleanly prepared from precursor silylamine Et2SiCl‐NH‐SitBu3 and Li[nBu]. The CF3SO3SiMe3 induced LiCl elimination of Et2SiCl‐NLi‐SitBu3 in thf afforded a 2‐silaazetidine derivative by [2+2] cycloaddition of Et2Si=N–SitBu3 with Et2Si(OCH=CH2)–NH–SitBu3. X‐ray quality crystals of this 2‐silaazetidine derivative (triclinic, space group P$\bar{1}$ ) were grown from benzene at room temperature. The starting material for this approach, Et2SiCl–NH–SitBu3, is water‐sensitive. Hydrolysis of Et2SiCl‐NH‐SitBu3 gave [tBu3SiNH3]Cl along with (Et2SiO)n oligomers. The hydro chloride [tBu3SiNH3]Cl could be isolated and was characterized by X‐ray crystallography (trigonal, space group P$\bar{3}$ ).  相似文献   

10.
Na[cyclo‐(P5tBu4)] ( 1 ) reacts with [FeBr2(CO)4] (2:1) to give the first homoleptic iron(II) complex [Fe{cyclo‐(P5tBu4)}2] ( 2 ) containing two tridentate cyclo‐(P5tBu4) ligands. Thermolysis of 2 up to 500 °C produces a new phosphorus‐rich iron phosphide, calculated as FeP6 according to the mass change.  相似文献   

11.
In reactions with transition metal compounds, tBu2P? P?P(X)tBu2 (X = Br, Me) acts mainly as a precursor of the tBu2P? P ligand, whereas tBu(Me3Si)P? P?P(Me)tBu2 acts as a precursor of the (Me3Si)P?PtBu ligand. Up to now, only Pt(0) d10 ML2 metal centres were found to be able to stabilize the tBu2P? P group in ‘pure form’ by means of η2‐coordination (side on). Several compounds of the [{η2 ? tBu2P? P}Pt(PR3)2] type were sufficiently stable to be isolated and characterized; however, not all of them gave single crystals suitable for X‐ray structure determinations. The X‐ray structures of these compounds and of [{µ ? (1,2:2 ? η ? tBu2P? P)Pt(PR3)2} {M(CO)5}] strongly suggest the ethene‐like form of 1,1‐di‐tert‐butyldiphosphene in these complexes. Such a form is also in agreement with RI DFT calculations with SVP basis for free tBu2P? P. However, in trapping experiments with cyclic olefins and cyclic dienes tBu2P? P exhibits, to some extent, electrophilic ‘singlet carbene’ properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
tBu2P–PLi–PtBu2 · 2THF reacts with [(R3P)2MCl2] (M = Pt, Pd, Ni; R3P = Et3P, pTol3P, Ph2EtP, iPr3P) to yield isomers of [(1,2‐η‐tBu2P=P–PtBu2)M(PR3)Cl], in which the tBu2P–P–PtBu2 ligand adopts the arrangement of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphanyl)diphosphenium cation. tBu2P–PLi–P(NEt2)2 · 2THF reacts with [(R3P)2MCl2] but does not form complexes with a tBu2P–P–P(NEt2)2 moiety, however, splitting of a P–P(NEt2)2 bond of the parent triphosphane takes place.  相似文献   

13.
Syntheses and Crystal Structures of tBu‐substituted Disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = OH, Br; X = OH, Y = H) and of the Adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = H, OH) are accessible from the reaction of CF3SO2Cl with tBu2SiHOH or tBu2Si(OH)2. By this reaction the disiloxane tBu2SiH‐O‐SiHtBu2 is formed together with tBu2SiH‐O‐SiOHtBu2. The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = Cl, Br) can be synthesized almost quantitatively from tBu2SiH‐O‐SiHtBu2 with Cl2 and Br2 in CH2Cl2. The structures of the disiloxanes tBu2SiX‐O‐SiYtBu2 (X = H, Y = OH; X = Y = OH, Br) show almost linear Si‐O‐Si units with short Si‐O bonds. Single crystals of the adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 have been obtained from the reaction of tBu3SiOH with CF3SO3H and of tBu3SiO3SCF3 with LiOH. According to the result of the X‐ray structural analysis (hexagonal, P‐62c), tBu3SiOLi · (LiO3SCF3)2·(H2O)2 features the ion pair [(tBu3SiOLi)2(LiO3SCF3)3(H2O)3Li]+ [CF3SO3]?. The central framework of the cation forms a trigonal Li6 prism.  相似文献   

14.
A dicationic platinum(II) terpyridyl complex, [(tBu3tpy)Pt(OXD)Pt(tBu3tpy)](PF6)2 (tBu3tpy=4,4′,4“‐tri‐tert‐butyl‐2,2′:6′,2”‐terpyridyl, OXD=2,5‐bis(4‐ethynylphenyl)[1,3,4]oxadiazole) formed phosphorescent organogels in acetonitrile or in a mixture of acetonitrile and alcohol. The structure and properties of these emissive gels were analyzed by polarizing optical and confocal laser scanning microscopy, and by variable‐temperature 1H NMR, UV/Vis, and emission spectroscopy. Dry gels were studied by scanning electron microscopy, powder X‐ray diffraction (PXRD), and small‐angle X‐ray scattering (SAXS). SEM images of the dry gel revealed a network of interwoven nanofibers (diameter 12–60 nm, length>5 μm). Intermolecular π–π interactions between the [(tBu3tpy)PtC≡C] moieties could be deduced from the variable 1H NMR spectra. The PXRD and SAXS data showed that the assembly of the gelator could be represented by a rectangular 2D lattice of 68 Å × 14 Å. The ability of the complex to gelate a number of organic solvents is most likely due to intermolecular π–π interactions between the [(tBu3tpy)PtC≡C] moieties.  相似文献   

15.
The solvent‐free methyllithium derivatives Li[CH2PR2] (R = tBu, Ph) were prepared via the reaction of CH3PR2 with Li[tBu]. It should be noted that the deprotonation of CH3PtBu2 with Li[tBu] occurred at 60 °C, whereas Li[CH2PPh2] was already formed from CH3PPh2 with Li[tBu] at ambient temperature. The structure determination of di‐tert‐butylphosphanylmethyllithium was performed by high resolution X‐ray powder diffraction analysis at different temperatures. This led to two possible structure solutions with similar quality criteria (space groups Iba2 and I2/a). Therefore CASTEP DFT‐D calculations were applied to verify the correct crystal structure. The solid‐state structure of di‐tert‐butylphosphanylmethyllithium consists of alternating edge‐sharing six‐ and four‐membered rings, which form a polymeric, infinite double‐chain along the crystallographic c axis in the monoclinic space group I2/a. Two Li[CH2PtBu2] units connected via an inversion center form a six‐membered Li2C2P2 ring in the chair conformation. The nearly flat four‐membered Li2C2 ring, is oriented perpendicularly to the twofold axis.  相似文献   

16.
S−F-bond activation of sulfur tetrafluoride at [Rh(Cl)(tBuxanPOP)] ( 1 ; tBuxanPOP=9,9-dimethyl-4,5-bis-(di-tert-butylphosphino)-xanthene) led to the formation of the cationic complex [Rh(F)(Cl)(SF2)(tBuxanPOP)][SF5] ( 2 a ) together with trans-[Rh(Cl)(F)2(tBuxanPOP)] ( 3 ) and cis-[Rh(Cl)2(F)(tBuxanPOP)] ( 4 ) which both could also be obtained by the reaction of SF5Cl with 1 . In contrast to that, the conversion of SF4 at the methyl complex [Rh(Me)(tBuxanPOP)] ( 5 ) gave the isolable and room-temperature stable cationic λ4-trifluorosulfanyl complex [Rh(Me)(SF3)(tBuxanPOP)][SF5] ( 6 ). Treatment of 6 with the Lewis acids BF3 or AsF5 produced the dicationic difluorosulfanyl complex [Rh(Me)(SF2)(tBuxanPOP)][BF4]2 ( 8 a ) or [Rh(Me)(SF2)(tBuxanPOP)][AsF6]2 ( 8 b ), respectively. Refluorination of 8 a was possible with the use of dimethylamine giving [Rh(Me)(SF3)(tBuxanPOP)][BF4] ( 9 ). A reaction of 6 with trichloroisocyanuric acid (TClCA) gave the fluorido complex [Rh(F)(Cl)(SF2)(tBuxanPOP)][Cl] ( 2 b ) together with chloromethane and SF5Cl.  相似文献   

17.
Syntheses and Properties of Di‐tert‐butylphosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 The phosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 are accessible from reaction of LiPtBu2 with ZnI2, HgCl2 and CuCl, respectively. [M(PtBu2)2]2 (M = Zn, Hg) are dimers in the solid state. X‐ray structural analyses of these phosphides reveal that [M(PtBu2)2]2 (M = Zn, Hg) contain four‐membered M2P2‐rings whereas [Cu(PtBu2)]4 features a planar eight‐membered Cu4P4‐ring. Degradation reaction of LiPtBu2(BH3) in the presence of HgCl2 results in the dimeric phosphanylborane BH3 adduct [tBu2PBH2(BH3)]2. X‐ray quality crystals of [tBu2PBH2(BH3)]2 (monoclinic, P21/n) are obtained from a pentane solution at 6 °C. According to the result of the X‐ray structural analysis, the O2‐oxidation product of [Hg(PtBu2)2]2, [Hg{OP(O)(tBu)OPtBu2}(μ‐OPtBu)]2, features in the solid state structure two five‐membered HgP2O2‐rings and a six‐membered Hg2P2O2‐ring. Herein the spiro‐connected Hg atoms are member of one five‐membered and of the six‐membered ring.  相似文献   

18.
The dehydrogenation reaction of a mixture of heptalene‐1,2‐ and heptalene‐4,5‐dimethanols 4a and 4b with basic MnO2 in AcOEt at room temperature led to the formation of the corresponding heptaleno[1,2‐c]furan‐1‐one 6a and heptaleno[1,2‐c]furan‐3‐one 7a (Scheme 2). Both products can be isolated by chromatography on silica gel. The methylenation of the furan‐3‐one 7a with 1 mol‐equiv. of Tebbe's reagent at ?25 to ?30° afforded the 2‐isopropenyl‐5‐methylheptalene‐1‐methanol 9a , instead of the expected 3,6‐dimethylheptaleno[1,2‐c]furan 8 (Scheme 3). Also, the treatment of 7a with Takai's reagent did not lead to the formation of 8 . On standing in solution at room temperature, or more rapidly on heating at 60°, heptalene 9a undergoes a reversible double‐bond shift (DBS) to 9b with an equilibrium ratio of 1 : 1.  相似文献   

19.
Oxidation of zero‐valent phosphine complexes [M(PtBu3)2] (M=Pd, Pt) has been investigated in 1,2‐difluorobenzene solution using cyclic voltammetry and subsequently using the ferrocenium cation as a chemical redox agent. In the case of palladium, a mononuclear paramagnetic PdI derivative was readily isolated from solution and fully characterized (EPR, X‐ray crystallography). While in situ electrochemical measurements are consistent with initial one‐electron oxidation, the heavier congener undergoes C?H bond cyclometalation and ultimately affords the 14 valence‐electron PtII complex [Pt(κ2PC‐PtBu2CMe2CH2)(PtBu3)]+ with concomitant formation of [Pt(PtBu3)2H]+.  相似文献   

20.
The analogy of the reactivity of group 1 phosphides to that of FLPs is further demonstrated by reactions with CO, affording a new synthetic route to acyl‐phosphide anions. The reaction of [K(18‐crown‐6)][PtBu2] ( 1 ) with CO affords [(18‐crown‐6)K?THF2][ZtBuP=C(tBu)O] ( 2?THF2 ) as the major product, and the minor product [K6(18‐crown‐6)][(tBu2PCO)2]3 ( 3 ). Species 2 reacts with either BPh3 or additional CO to give [K(18‐crown‐6)][(Ph3B)tBuPC(tBu)O] ( 4 ) and [K(18‐crown‐6)][(OCtBu)2P] ( 5 ), respectively. The acyl‐phosphide anion 2 is thought to be formed by a photochemically induced radical process involving a transient species with triplet carbene character, prompting 1,2‐tert‐butyl group migration. A similar process is proposed for the subsequent reaction of 2 with CO to give 5 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号