首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near- and mid-infrared spectra of uranyl selenite mineral haynesite (UO(2))(3)(SeO(3))(2)(OH)(2).5H(2)O, were studied and assigned. Observed bands were assigned to the stretching vibrations of uranyl and selenite units, stretching, bending and libration modes of water molecules and hydroxyl ions, and delta U-OH bending vibrations. U-O bond lengths in uranyl and hydrogen bond lengths O-H...O were inferred from the spectra.  相似文献   

2.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

3.
In the present paper we report combined experimental and theoretical studies of the UV-vis-NIR spectra of the mineral compounds malachite, rosasite, and aurichalcite and of the precursor compounds for Cu/ZnO catalysts. For the copper species in the minerals the crystal field splitting and the vibronic coupling constants are estimated using the exchange charge model of the crystal field accounting for the exchange and covalence effects. On this basis the transitions responsible for the formation of the optical bands arising from the copper centers in minerals are determined and the profiles of the absorption bands corresponding to these centers are calculated. The profiles of the absorption bands calculated as a sum of bands of their respective Cu species are in quite good agreement with the experimental data. In agreement with crystal chemical considerations, the Zn ions were found to be preferentially located on the more regular, i.e., less distorted, octahedral sites in zincian malachite and rosasite, suggesting a high degree of metal ordering in these phases. This concept also applies for the mineral aurichalcite, but not for synthetic aurichalcite, which seems to exhibit a lower degree of metal ordering. The catalyst precursor was found to be a mixture of zincian malachite and a minor amount of aurichalcite. The best fit of the optical spectrum is obtained assuming a mixture of contributions from malachite (0% Zn) and rosasite (38% Zn of [Zn + Cu]), which is probably due to the intermediate Zn content of the precursor (30%).  相似文献   

4.
Summary The stabilities of rosasite, (Cu, Zn)2 (CO3)(OH)2, and aurichalcite, (Zn, Cu)5(CO3)2(OH)6, have been determined by solution experiments with computer calculations of aqueous species in equilibrium with the solid phases. G f o values for rosasite and aurichalcite have been calculated as –1100 and –2766 kJ mol–1 respectively for specific samples of the two minerals. Most of the difference between the free energies of the compounds and those of malachite, Cu2(CO3)(OH)2, and hydrozincite, Zn5(CO3)2(OH)6 arises from substitution of the minor cation in the crystal lattice. Malachite, zincian malachite and rosasite should be considered as a single isomorphous series.Part II: A. K. Alwan and P. A. Williams,Transition Acct. Chem., 4, 319 (1979).  相似文献   

5.
Infrared and Raman spectroscopy have been used to characterise synthetic hydrotalcites of formula Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O. The spectra have been used to assess the molecular assembly of the cations in the hydrotalcite structure. The spectra may be conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. The Raman spectra of the hydroxyl-stretching region enable bands to be assigned to the CuOH, ZnOH and AlOH units. It is proposed that in the hydrotalcites with minimal cationic replacement that the cations are arranged in a regular array. For the Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O hydrotalcites, spectroscopic evidence suggests that 'islands' of cations are formed in the structure. In a similar fashion, the bands assigned to the interlayer water suggest that the water molecules are also in a regular well-structured arrangement. Bands are assigned to the hydroxyl stretching vibrations of water. Three types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface and (c) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite as it is hydrogen bonded to both the carbonate anion and the hydroxyl surface.  相似文献   

6.
Hydrozincite and smithsonite were synthesised by controlling the partial pressure of CO2. Previous crystallographic studies concluded that the structure of hydrozincite was a simple one. However both Raman and infrared spectroscopy show that this conclusion is questionable. Multiple bands are observed in both the Raman and infrared spectra in the (CO3)2− antisymmetric stretching and bending regions of hydrozincite showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the hydrozincite structure. Multiple OH stretching vibrations centred in both the Raman and infrared spectra show that the OH units in the hydrozincite structure are non-equivalent. The Raman spectrum of synthetic smithsonite is a simple spectrum characteristic of carbonate with Raman bands observed at 1408, 1092 and 730 cm−1.  相似文献   

7.
Summary Naturally occurring waters in the oxidized zone of a Pb-Zn orebody have been collected where they are responsible for the formation of solid hydrozincite, Zn5(OH)6(CO3)2. The solutions were analysed and the computer programme COMICS used to describe the complex ion distribution in each case. From the results, the solubility product for hydrozincite has been recalculated as log KSP=–14.9(0.1). This value has been used to calculate the fields of stability of some secondary zinc minerals and illustrates the reason for the apparently anomalous stability of hydrozincite in nature, compared with what might be expected from considerations of earlier data.  相似文献   

8.
Raman and infrared spectra of secondary uranyl phosphate vanmeersscheite and Raman spectrum of secondary uranyl arsenate arsenuranylite were recorded and interpreted, and the spectra related to the structure of the minerals. Observed bands were attributed to the stretching and bending vibrations of uranyl, phosphate and/or arsenate units and OH (H(2)O and OH(-)) units. Phosphuranylite sheet topology is characteristic for both minerals. U-O bond lengths in uranyl were calculated from the spectra and compared with those inferred for vanmeersscheite from the X-ray single crystal structure analysis. O-H...O hydrogen bonds in both minerals were also inferred using the Libowitzky empirical relation.  相似文献   

9.
Infrared spectroscopy has been used to characterise synthesised hydrotalcites of formula Mg(x)Zn(6 - x)Cr2(OH)16(CO3) x 4H2O and Ni(x)Co(6 - x)Cr2(OH)16(CO3) x 4H2O. The infrared spectra are conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. Three carbonate antisymmetric stretching vibrations are observed at around 1358, 1387 and 1482 cm(-1). The 1482 cm(-1) band is attributed to the CO stretching band of carbonate hydrogen bonded to water. Variation of the intensity ratio of the 1358 and 1387 cm(-1) modes is linear and cation dependent. By using the water bending band profile at 1630 cm(-1) four types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface (c) coordinated water and (d) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite interlayer as it is hydrogen bonded to both the carbonate anion, adjacent water molecules and the hydroxyl surface.  相似文献   

10.
Son JH  Kwon YU 《Inorganic chemistry》2004,43(6):1929-1932
A new intercluster salt crystal [epsilon-Al13O4(OH)24(H2O)12]2[V2W4O19]3(OH)2).27H2O (1) was synthesized from the reaction of octahedral Lindqvist-type polyoxometalate [V2W4O19](4-) and truncated tetrahedral Keggin-type [epsilon-Al13O4(OH)24-H2O)(12)](7+) cluster ions. The crystal structure shows that the oppositely charged cluster ions are arranged alternately and have their contacting faces parallel to each other for maximal interactions, both electrostatic and hydrogen bonding. The face-to-face interaction mode of the clusters allows analysis of the crystal structure in an analogy to the bond directionality of conventional inorganic crystals. Therefore, the packing of clusters in 1 is that of As2O3 (Claudetite-II). With the bond directionality, the crystal has large one-dimensional channels with a cross-sectional area of 14.17 x 13.88 A(2) that are filled by lattice water and charge-balancing OH-.  相似文献   

11.
The synthesis of malachite CuCO3·Cu(OH)2 or Cu2CO3(OH)2 was studied through titrations of copper(II) salt solutions with a solution of sodium carbonate at different temperatures. The precipitates were characterized by TG, IR and chemical analysis. The composition varies depending on thepH of the solution and the temperature. Purer malachite was synthesized by simple mixing of a solution of copper(II) nitrate or sulfate with a solution of sodium carbonate at 50°C.The kinetics of the thermal decomposition of synthetic malachite was described by eitherR 3 orA m(m=1.2–1.4) law, according to TG analysis, both isothermal and nonisothermal. The Arrhenius parameters determined using three different integral methods showed the kinetic compensation effect, which is correlated to the working temperature interval analyzed.The authors thank Mr. H. Takemoto for analyzing kinetics of the thermal decomposition of synthetic malachite.  相似文献   

12.
13.
We report results from a computational study of the binding in complexes formed from one of the transition-metal ions Sc(+), Ti(2+), or V(3+), each of which has two valence electrons outside an argon core, and one of the second-row hydrides FH, OH(2), NH(3), BH(3), or BeH(2). The complexes that involve the electron-rich ligands FH, OH(2), and NH(3) have strong ion-dipole components to their binding. There are large stabilization energies for sigma-interactions that transfer charge from occupied lone-pair natural bond orbitals on the F, O, or N atom of the (idealized) Lewis structure into empty non-Lewis orbitals on the metal ions; these interactions effectively increase electron density in the bonding region between the metal ion and liganded atom, and the metal ions in these complexes act in the capacity of Lewis acids. The complexes formed from the electron-poor hydrides BH(3) and BeH(2) consistently incorporate bridging hydrogen atoms to support binding, and there are large stabilization energies for interactions that transfer charge from the Be-H or B-H bonds into the region between the metal ion and liganded atom. The metal ions in Sc(+)-BeH(2), Ti(2+)-BeH(2), Ti(2+)-BH(3), and V(3+)-BH(3) act in the capacity of Lewis acids, whereas the scandium ion in Sc(+)-BH(3) acts as a Lewis base.  相似文献   

14.
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 x 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3- and H2O vibrations. Additional bands obtained in the region of v3 and v1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of v3 modes, since the BrO3- ion occupies a site of lower symmetry. The appearance v1 mode of BrO3- anion at a lower wavenumber (771 cm(-1)) is attributed to the attachment of hydrogen to the BrO3- anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 x 3H2O structure is confirmed. The lifting of degeneracy of v4 mode indicates that the symmetry of BrO3- anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77-523 K for various temperatures. A small structural rearrangement takes place in BrO3- ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3- ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal.  相似文献   

15.
采用表面改性和离子交换相结合的方法制备了Ni2(OCH3)2/SiO2负载型双核金属甲氧基配合物催化剂,利用红外光谱(IR)、程序升温脱附(TPD)、程序升温表面反应(TPSR)和微反技术考察了催化剂的表面结构以及CO2和CH3OH的化学吸附和反应性能.结果表明:Ni2(OCH3)2/SiO2中Ni2+与载体SiO2表面O2-以双齿配位形式键合,甲氧基以桥基形式联结双金属离子形成双核物种Ni2(OCH3)2;CO2在催化剂表面存在甲氧碳酸酯基物种和桥式两种吸附态,CH3OH则只有一种分子吸附态;在100~200℃条件下,CO2和CH3OH在催化剂上的反应产物主要是DMC和H2O;根据反应结果,讨论了催化反应机理.  相似文献   

16.
An amide-to-ester backbone substitution in a protein is accomplished by replacing an alpha-amino acid residue with the corresponding alpha-hydroxy acid, preserving stereochemistry, and conformation of the backbone and the structure of the side chain. This substitution replaces the amide NH (a hydrogen bond donor) with an ester O (which is not a hydrogen bond donor) and the amide carbonyl (a strong hydrogen bond acceptor) with an ester carbonyl (a weaker hydrogen bond acceptor), thus perturbing folding energetics. Amide-to-ester perturbations were used to evaluate the thermodynamic contribution of each hydrogen bond in the PIN WW domain, a three-stranded beta-sheet protein. Our results reveal that removing a hydrogen bond donor destabilizes the native state more than weakening a hydrogen bond acceptor and that the degree of destabilization is strongly dependent on the location of the amide bond replaced. Hydrogen bonds near turns or at the ends of beta-strands are less influential than hydrogen bonds that are protected within a hydrophobic core. Beta-sheet destabilization caused by an amide-to-ester substitution cannot be directly related to hydrogen bond strength because of differences in the solvation and electrostatic interactions of amides and esters. We propose corrections for these differences to obtain approximate hydrogen bond strengths from destabilization energies. These corrections, however, do not alter the trends noted above, indicating that the destabilization energy of an amide-to-ester mutation is a good first-order approximation of the free energy of formation of a backbone amide hydrogen bond.  相似文献   

17.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

18.
IR-UV ion-dip spectra of the 7-azaindole (7AI)(CH(3)OH)(n) (n=1-3) clusters have been measured in the hydrogen-bonded NH and OH stretching regions to investigate the stable structures of 7AI(CH(3)OH)(n) (n=1-3) in the S(0) state and the cooperativity of the H-bonding interactions in the H-bonded networks. The comparison of the IR-UV ion-dip spectra with IR spectra obtained by quantum chemistry calculations shows that 7AI(CH(3)OH)(n) (n=1-3) have cyclic H-bonded structures, where the NH group and the heteroaromatic N atom of 7AI act as the proton donor and proton acceptor, respectively. The H-bonded OH stretch fundamental of 7AI(CH(3)OH)(2) is remarkably redshifted from the corresponding fundamental of (CH(3)OH)(2) by 286 cm(-1), which is an experimental manifestation of the cooperativity in H-bonding interaction. Similarly, two localized OH fundamentals of 7AI(CH(3)OH)(3) also exhibit large redshifts. The cooperativity of 7AI(CH(3)OH)(n) (n=2,3) is successfully explained by the donor-acceptor electron delocalization interactions between the lone-pair orbital in the proton acceptor and the antibonding orbital in the proton donor in natural bond orbital (NBO) analyses.  相似文献   

19.
Infrared absorptions for the matrix-isolated lead and tin hydroxides M(OH), M(OH)2 and M(OH)4 (M = Pb, Sn) were observed in laser-ablated metal atom reactions with H2O2 during condensation in excess argon. The major M(OH)2 product was also observed with H2 and O2 mixtures, which allowed the substitution of 18O2. The band assignments were confirmed by appropriate D2O2, D2, 16O18O, and 18O2 isotopic shifts. MP2 and B3LYP calculations were performed to obtain molecular structures and to reproduce the infrared spectra. The minimum energy structure found for M(OH)2 has C(s) symmetry and a weak intramolecular hydrogen bond. In experiments with Sn, HD, and O2, the internal D bond is favored over the H bond for Sn(OH)(OD). The Pb(OH)4 and Sn(OH)4 molecules are calculated to have S4 symmetry and substantial covalent character.  相似文献   

20.
Infrared and Raman spectra on Na3H(SO4)2, K3 H(SO4)2 and (NH4)3 H(SO4)2 crystals have been investigated at 300 and 100 K in the 4000 to 30 cm−1 region. An assignment of bands in terms of OH group frequencies and more or less distorted tetrahedra of ammonium and sulphate ions is given. The crystallographic and spectroscopic symmetry and/or dissymetry of OHO hydrogen bonds linking sulphate ions into dimers is discussed using OH group frequencies and the splitting of the v1 (SO4) Raman bands as criteria. In the particular case of (NH4)3H(SO4)1 compound containing several solid phases it can be shown that the room temperature phase (II) is strongly disordered, principally because of an orientational disorder of ammonium ions, and that a progressive ordering takes place with temperature lowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号