首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The normal mode frequencies and corresponding vibrational assignments of tetrafluoroformaldazine (F(2)CNNCF(2)) are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (C-F stretch, C[triple bond]N stretch, N-N stretch, C=C-N bend, CF(2) wag, CF(2) rock CF(2) scissors, CF(2) twist, and C=N-N=C torsion) utilizing the C(2h) symmetry of the molecule. Uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

2.
The vibrational frequencies and corresponding normal mode assignments of disilylcarbodiimide are examined theoretically using the GAUSSIAN98 set of quantum chemistry codes. MP2 and DFT (B3LYP) calculations predict a non-linear structure with C2 symmetry. All normal modes were successfully assigned to one of eight types of motion (NCN asymmetric stretch, NCN symmetric stretch, Si–H stretch, Si–N stretch, H–Si–H bend, SiH3 wag, SiH3 twist, and Si–NN–Si torsion) utilizing the C2 symmetry of the molecule. Uniform scaling factors were derived for each type of motion. Predicted infrared and Raman intensities are reported. Calculated normal mode frequencies for disilylcarbodiimide-d6 are also reported.  相似文献   

3.
The normal mode frequencies and corresponding vibrational assignments of triethynylmethylgermane are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis Ge-C stretch, C[triple bond]C stretch, C-H stretch, C[triple bond]C-H bend, Ge-C[triple bond]C bend, C-Ge-C bend, H-C-H bend, CH3 wag, and CH3 twist) utilizing the C3v symmetry of the molecule. Uniform scaling factors were derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

4.
The normal mode frequencies and corresponding vibrational assignments of dicyanodifluorosulfur are examined theoretically using the Gaussian03 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of six types of motion predicted by a group theoretical analysis (CN stretch, SC stretch, SF stretch, FSC bend, SCN bend, and CSC bend) utilizing the C(2v) symmetry of the molecule. A set of uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

5.
The normal mode frequencies and corresponding vibrational assignments of trichloroboroxine (B3O3Cl3) in D3h symmetry are examined theoretically using the Gaussian 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of five types of motion (B-Cl stretch, B-O stretch, B-Cl bend, O-B-O bend, and B(OOCl) umbrella motion) predicted by a group theoretical analysis. By comparing the vibrational frequencies with IR and Raman spectra available in the literature, a set of scaling factors is derived. Molecular orbitals and bonding are examined.  相似文献   

6.
The normal mode frequencies and corresponding vibrational assignments of adamantane in Td symmetry are examined theoretically using the Gaussian 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of eight types of motion predicted by a group theoretical analysis. The vibrational modes of the deuterated form of adamantane were also calculated and compared against experimental data.  相似文献   

7.
The normal mode frequencies and corresponding vibrational assignments of Sn(CCH)4 are examined theoretically using the 98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of six types of motion predicted by a group theoretical analysis (Sn–C stretch, CC stretch, C–H stretch, CC–H bend, Sn–CC bend, and C–Sn–C bend) utilizing the Td symmetry of the molecule. A set of uniform scaling factors were derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

8.
The vibrational frequencies and corresponding normal mode assignments of tetraazidogermane are examined theoretically using the Gaussian98 set of quantum chemistry codes. All normal modes were successfully assigned to one of seven types of motion predicted by a group theoretical analysis (N-N-N asymmetric stretch, N-N-N symmetric stretch, Ge-N stretch, N-N-N bend, Ge-N-N bend, N-Ge-N bend, and N-Ge-N-N torsion) utilizing the S(4) symmetry of the molecule. The molecular orbitals of Ge(N(3))(4) are examined.  相似文献   

9.
The normal mode frequencies and corresponding vibrational assignments of phosphirane in are examined theoretically using the GAUSSIAN 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of nine types of motion (C–C stretch, P–C stretch C–H stretch, P–H stretch, CH2 scissors, CH2 wag, CH2 rock, CH2 twist, and P–H wag) predicted by a group theoretical analysis. Comparing the vibrational frequencies with IR and Raman spectra available in the literature, a set of scaling factors are derived. Predicted infrared and Raman intensities are reported.  相似文献   

10.
The normal mode frequencies and corresponding vibrational assignments of diethynyldimethylsilane are examined theoretically using the Gaussian 98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (Si-C stretch, C[triple bond]C stretch, C-H stretch, C[triple bond]C-H bend, Si-C[triple bond]C bend, C-Si-C bend, H-C-H bend, CH3 wag, and CH3 twist) utilizing the C3v symmetry of the molecule. A set of uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

11.
The normal mode frequencies and corresponding vibrational assignments of Triethynylmethylstannane (SnCH(3)(CCH)(3)) are examined theoretically using the Gaussian 98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (Sn-C stretch, C[triple bond]C stretch, C-H stretch, C[triple bond]C-H bend, Sn-C[triple bond]C bend, C-Sn-C bend, H-C-H bend, CH(3) wag, and CH(3) twist) utilizing the C(3v) symmetry of the molecule. A set of uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

12.
The vibrational frequencies and corresponding normal mode assignments of digermylcarbodiimide are examined theoretically using the Gaussian98 set of quantum chemistry codes. All normal modes were successfully assigned to one of eight types of motion (N=C=N asymmetric stretch, N=C=N symmetric stretch, Ge-H stretch, Ge-N stretch, H-Ge-H bend, GeH(3) wag, GeH(3) twist, and Ge-N. . .N-Ge torsion) utilizing the C(2) symmetry of the molecule. Uniform scaling factors were derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

13.
The normal mode frequencies and corresponding vibrational assignments of Triethynylmethylsilane (CH3Si(CCH)3) are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (Si-C stretch, C triple bond C stretch, C-H stretch, C triple bond C-H bend, Si-C triple bond C bend, C-Si-C bend, H-C-H bend, CH3 wag, and CH3 twist) utilizing the C3v symmetry of the molecule. A set of uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

14.
The normal mode frequencies and corresponding vibrational assignments of of tetraiododiphosphine in C2h symmetry are examined theoretically using the Gaussian 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of six types of motion (P-I stretch, P-P stretch, PI2 scissors, PI2 twist, PI2 wag, and PI2 rock) predicted by a group theoretical analysis. Computed vibrational frequencies are with IR and Raman spectra available in the literature, and uniform scaling factors are derived. Theoretical IR and Raman intensities are reported.  相似文献   

15.
The normal mode frequencies and corresponding vibrational assignments of of hafnium tetrahydroborate in T symmetry are examined theoretically using the Gaussian 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of to one of six types of motion (B-H stretch, Hf-B stretch, B-Hf-B bend, H-B-H bend, BH4 wag, and BH4 twist) predicted by a group theoretical analysis. By comparing the vibrational frequencies with IR and Raman spectra available in the literature, a set of scaling factors is derived. Theoretical IR and Raman intensities are reported. Quantum chemical calculations predict that the molecule does not possess strict Td symmetry. The Td structure possesses one negative eigenvalue. The minimum energy structure possesses T symmetry.  相似文献   

16.
The normal mode frequencies and corresponding vibrational assignments of phosphorous tricyanide (P(CN)(3)) are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of four types of motion predicted by a group theoretical analysis P-C stretch, CN stretch, P-C[triple bond]C bend, and C-P-C bend) utilizing the C(3v) symmetry of the molecule. A uniform scaling factor was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

17.
The vibrational frequencies and corresponding normal mode assignments of cyanogen azide are examined theoretically using the Gaussian03 set of quantum chemistry codes. All normal modes were successfully assigned to one of seven types of motion predicted by a group theoretical analysis (NN stretch, NN stretch, N–C stretch, CN stretch, NNN bend, NN–C bend, and N–CN bend). Theoretical infrared and Raman intensities are reported. The molecular orbitals and bonding of cyanogen azide are examined.  相似文献   

18.
The normal mode frequencies and corresponding vibrational assignments of digermyl ether in C(2v) symmetry are examined theoretically using the Gaussian 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of six types of motion (Ge-H stretch, Ge-O stretch, Ge-O-Ge bend, H-Ge-H bend, GeH(3) wag, and GeH(3) twist) predicted by a group theoretical analysis. By comparing the vibrational frequencies with IR and Raman spectra available in the literature, a set of scaling factors is derived. Predicted infrared and Raman intensities are reported.  相似文献   

19.
The normal mode frequencies and corresponding vibrational assignments of aluminum tetrahydroborate in D3 symmetry are examined theoretically using the 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of seven types of motion (B-H stretch, Al-B stretch, B-Al-B bend, H-B-H bend, BH4 wag, BH4 rock, and BH4 twist) predicted by a group theoretical analysis. By comparing the vibrational frequencies with infrared and Raman spectra available in the literature, a set of scaling factors is derived. Theoretical infrared intensities and Raman activities are reported.  相似文献   

20.
The vibrational frequencies and corresponding normal mode assignments of dewar benzene are examined theoretically using the 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of six types of motion predicted by a group theoretical analysis (C–H stretch, C–C stretch, C=C stretch, CH wag, C–C–C bend, and C–C–C–C torsion) utilizing the C2v symmetry of the molecule. The molecular orbitals and bonding of dewar benzene are examined. Predicted normal mode frequencies for trans-dewar benzene (C2h symmetry) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号