共查询到20条相似文献,搜索用时 15 毫秒
1.
First-principles study of the structural, elastic, electronic, optical, and vibrational properties of intermetallic Pd2Ga
下载免费PDF全文

The structural,elastic,electronic,optical,and vibrational properties of the orthorhombic Pd2Ga compound are investigated using the norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory.The calculated lattice parameters have been compared with the experimental values and found to be in good agreement with these results.The second-order elastic constants and the other relevant quantities,such as the Young’s modulus,shear modulus,Poisson’s ratio,anisotropy factor,sound velocity,and Debye temperature,have been calculated.It is shown that this compound is mechanically stable after analysing the calculated elastic constants.Furthermore,the real and imaginary parts of the dielectric function and the optical constants,such as the optical dielectric constant and the effective number of electrons per unit cell,are calculated and presented.The phonon dispersion curves are derived using the direct method.The present results demonstrate that this compound is dynamically stable. 相似文献
2.
The structural, elastic, electronic, optical, and vibrational properties of the orthorhombic Pd2Ga compound are investigated using the norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory. The calculated lattice parameters have been compared with the experimental values and found to be in good agreement with these results. The second-order elastic constants and the other relevant quantities, such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocity, and Debye temperature, have been calculated. It is shown that this compound is mechanically stable after analysing the calculated elastic constants. Furthermore, the real and imaginary parts of the dielectric function and the optical constants, such as the optical dielectric constant and the effective number of electrons per unit cell, are calculated and presented. The phonon dispersion curves are derived using the direct method. The present results demonstrate that this compound is dynamically stable. 相似文献
3.
基于密度泛函理论平面波方法研究了IVB族过渡金属氮化物TiN, ZrN, HfN的电子结构、 弹性性质和光学性质. 研究表明, IVB族过渡金属氮化物晶格的电子结构分别体现了共价性、 离子性和金属性, 且基态下体系呈金属性. 各晶格在坐标基矢方向上的杨氏模量的数值与体对角线方向上的差距明显, 体现出典型的弹性性质各向异性, 这导致了实验研究在制备其薄膜时不可避免地产生晶格畸变与微裂纹. 伴随着态密度中赝隙的红移, TiN, ZrN, HfN的金属性依次增强, 使得材料在力学性能方面脆性减弱, 单晶的各向异性程度提升, 以及光学性质方面电子跃迁机理由带内跃迁到带间跃迁转变所需入射光子能量的蓝移和光谱选择性能的下降. 因此, 通过降低IVB族过渡金属氮化物中自由电子的组分以加强材料的共价性, 有利于提高材料弹性性质的各向同性, 改善材料的光谱选择性能.关键词:第一性原理弹性性质光学性质 相似文献
4.
Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe_2 are discussed in detail. It is found that the tensile strain on CuGaTe_2 is beneficial to the decrease of lattice thermal conductivity by reducing the mean sound velocity and Debye temperature. Moreover, all strained and unstrained CuGaTe_2 exhibit rather similar optical characters. But the tensile strain improves the ability to absorb sunlight in the visible range.These research findings can give hints for designing thermoelectric and photovoltaic devices. 相似文献
5.
采用密度泛函理论中平面波基矢,模守恒赝势结合局域密度近似以及广义梯度近似对固态Kr在高压下的结构以及弹性性质进行了研究, 通过计算发现弹性常数,Debye温度以及声速都随压力的增大而增大,所计算的弹性常数与实验和其他的理论符合的很好. 利用Debye模型得到了固态Kr的热力学性质, 熵随压力的增大而减小,随温度升高而升高;而定容热容Cv,定压热容Cp则随温度升高而升高,而且Cv在达到一定温度时趋于定值,所得的热力学性质和实验值是相符的.最后还预测了固态Kr在高压下的电子结构和光学性质, 计算结果表明随压力的增加固态Kr的前沿能带变窄,光吸收系数增大,吸收峰增宽,电子更容易发生跃迁,固态Kr有可能转化为半导体.关键词:Kr第一性原理弹性常数光学性质 相似文献
6.
Self-consistent band calculations on four intermetallic compounds of the CsCl structure are presented. The calculations were performed employing the self-consistent ultrasoft pseudopotential method based on the density functional theory, within the local density approximation and the generalized gradient approximation. The calculations predicted that the equilibrium lattice constants are in excellent agreement with the experiment for CoAl and are 1% smaller than experimental values for CoBe, CoSc and CoZr, respectively. In the present study, ordered CoAl do not show any magnetic moment, whereas the other three compounds have moderate magnetic moments of about 0.2 and 0.7 Bohr magnetons (μB ) per atom. The elastic constants are calculated using two approaches, the energy-strain method and the use of phonon dispersion curves. The values obtained from the two methods are in reasonable agreement for the studied intermetallic compounds CoZ (Z?=?Al, Be, Sc and Zr). The brittleness and ductility properties of CoZ (Z?=?Al, Be, Sc and Zr) are determined by Poisson’s ratio σ criterion and Pugh’s criterion. The calculated elastic constants satisfy the mechanical stability criterion and the ductility of CoZr and CoSc is predicted by Pugh’s criterion. The band structure and density of states, and phonon dispersion curves have been obtained and compared with the available experimental results as well as with existing theoretical calculations. We studied and discussed the position of Fermi level for the selected four intermetallic compounds. 相似文献
7.
We perform first-principles calculations of the lattice constants,elastic constants,and optical properties for alphaand gamma-uranium based on the ultra-soft pseudopotential method.Lattice constants and equilibrium atomic volume are consistent pretty well with the experimental results.Some difference exists between our calculated elastic constants and the experimental data.Based on the satisfactory ground state electronic structure calculations,the optical conductivity,dielectric function,refractive index,and extinction coefficients are also obtained.These calculated optical properties are compared with our results and other published experimental data. 相似文献
8.
9.
Structural,electronic,optical,elastic properties and Born effective charges of monoclinic HfO_2 from first-principles calculations
下载免费PDF全文

First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lam6 constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work. 相似文献
10.
We report a systematic study of the structural, electronic, optical and elastic properties of the ternary ruthenium-based hydrides A2RuH6 (A = Mg, Ca, Sr and Ba) within two complementary first-principles approaches. We describe the properties of the A2RuH6 systems looking for trends on different properties as a function of the A sublattice. Our results are in agreement with experimental ones when the latter are available. In particular, our theoretical lattice parameters obtained using the GGA-PBEsol to include the exchange-correlation functional are in good agreement with experiment. Analysis of the calculated electronic band structure diagrams suggests that these hydrides are wide nearly direct band semiconductors, with a very slight deviation from the ideal direct-band gap behaviour and they are expected to have a poor hole-type electrical conductivity. The TB-mBJ potential has been used to correct the deficiency of the standard GGA for predicting the optoelectronic properties. The calculated TB-mBJ fundamental band gaps are about 3.53, 3.11, 2.99 and 2.68 eV for Mg2RuH6, Ca2RuH6, Sr2RuH6 and Ba2RuH6, respectively. Calculated density of states spectra demonstrates that the topmost valence bands consist of d orbitals of the Ru atoms, classifying these materials as d-type hydrides. Analysis of charge density maps tells that these systems can be classified as mixed ionic-covalent bonding materials. Optical spectra in a wide energy range from 0 to 30 eV have been provided and the origin of the observed peaks and structures has been assigned. Optical spectra in the visible range of solar spectrum suggest these hydrides for use as antireflection coatings. The single-crystal and polycrystalline elastic moduli and their related properties have been numerically estimated and analysed for the first time. 相似文献
11.
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material. 相似文献
12.
The elastic, electronic, thermodynamic and optical properties of the zinc-blende structure aluminum nitride (AlN) under high pressure have been investigated using first-principles calculations. The dependencies of the elastic constants, the bulk modulus, the shear modulus and energy gaps on the applied pressure are presented, and the results are in good agreement with comparable experimental and theoretical values. Also, the energy band structure and density of states under high pressure have been analysed. Furthermore, the optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss, are discussed for radiation up to 50 eV. 相似文献
13.
First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimental data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wavevelocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than theexperimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Si p states indicates a certain covalency of the Os-Si bonds. 相似文献
14.
The spectrum of theB 2Σ-X 2Σ system of the CaF molecule has been photographed in the second order of a 10.6 m concave grating spectrograph with 0.33 Å/mm dispersion. The rotational structure of the (0, 0) and (1, 0) bands has been analysed and the precise molecular constants have been obtained. Using the constants so determined the band origins of a large number of bands with 0 <v′,v″ < 10 have been calculated and used to obtain the accurate vibrational constants forB andX states and these are presented. 相似文献
15.
采用密度泛函理论,赝势平面波方法计算了金属铀a相的晶体结构,弹性常数,体模量,电子能带结构和光学常数(折射率n和消光系数k)等.其中,铀的晶格参数,弹性常数和体模量等与实验及其它第一性原理计算结果十分吻合.计算得到了铀的光学常数,与实验结果作了对比并进行了分析说明. 相似文献
16.
17.
We have revisited and refined the high‐pressure elastic properties of body‐centered‐cubic Ta using the accurate all‐electron full potential linearized augmented plane wave method (FP‐LAPW) within the framework of density functional theory (DFT). Based on the total energy calculations, we first deduced the accurate static equation of state (EOS) of Ta. Then we derived the elastic constants, C11, C12, and C44 under pressure up to 500 GPa using the pressure‐correction method which corrected the previous method theoretically, and the calculated elastic constants agree well with experiment under high pressure. From the accurately determined elastic constants, we also discussed the elastic anisotropy and the sound velocities of Ta at high pressure. The predicted Debye temperature at 0 GPa and 0 K is in good agreement with experiment, and the Debye temperature increases monotonously as pressure increases. 相似文献
18.
Gbor Molnr Mirko Mikolasek Karl Ridier Alaa Fahs William Nicolazzi Azzedine Bousseksou 《Annalen der Physik》2019,531(10)
The lattice dynamical aspects of the spin crossover phenomenon in molecular solids—displaying intricate couplings between the electronic spin state of the molecules and the lattice properties—are reviewed. Emphasis is on experimental and theoretical approaches giving access to the vibrational spectra and to key properties, such as the heat capacity, vibrational entropy and enthalpy, lattice rigidity, elastic constants, and elastic interactions. Recent results in relation to surface and finite size effects as well as with ultrafast out‐of‐equilibrium phenomena are also covered. 相似文献
19.
热力学性质是钝感高能炸药1, 3, 5-三氨基-2, 4, 6-三硝基苯(TATB)爆轰性质和安全性评估分析的重要参数. 由于结构的复杂性, TATB炸药尚缺乏系统的实验和理论计算结果. 结合全原子力场和分子动力学的方法, 本文系统研究了不同温度和压力条件下TATB的力学性质和热力学参数, 得到了弹性模量、德拜温度等随温度、压力的变化情况, 并与实验进行了对比分析. 结果表明: 在 0-50 GPa外部压力下, TATB晶体保持力学稳定, 弹性常数和弹性模量随压力升高而增大, 各向异性程度随压力升高而减小, 泊松比和延展性则受压力的影响较小; 随温度的升高, TATB的力学稳定性逐渐下降, 有发生力学失稳的可能, 各弹性常数随温度升高而逐渐减小, 各向异性程度也随之减小; TATB 的声速和德拜温度同样随着压力升高而增大, 平均声速从0 GPa下的1833 m/s, 增加到10 GPa 下的3143 m/s, 德拜温度由0 GPa下的254 K增加到10 GPa的587 K. TATB 热膨胀系数的计算表明, 在200-500 K 温度常压情况下, 其体热膨胀系数为35.9×10-5 K-1, 与实验数据符合较好. 相似文献
20.
An effort has been made for obtaining higher-order elastic constants for MgO starting from basic parameters, viz. nearest-neighbor distance and hardness parameter using Coulomb and Börn-Mayer potentials. These are calculated in a wide temperature range (100–1000 K) and compared with available theoretical and experimental results. 相似文献