首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
We produced epitaxial graphene under a moderate pressure of 4 mbar(about 400 Pa) at temperature 1600℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC(0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.  相似文献   

2.
Epitaxial graphene is synthesized by silicon sublimation from the Si-terminated 6H–SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigated. X-ray photoelectron spectroscopy spectra and atomic force microscopy images reveal that the epitaxial graphene thickness increases and the epitaxial graphene roughness decreases with the increase in graphitization temperature. This means that the thickness and roughness of epitaxial graphene films can be modulated by varying the graphitization temperature. In addition, the electrical properties of epitaxial graphene film are also investigated by Hall effect measurement.  相似文献   

3.
汤晓燕  张玉明  张义门 《中国物理 B》2010,19(4):47204-047204
Epitaxial channel metal-oxide semiconductor field-effect transistors (MOSFETs) have been proposed as one possible way to avoid the problem of low inversion layers in traditional MOSFETs. This paper presents an equation of maximum depletion width modified which is more accurate than the original equation. A 4H--SiC epitaxial n-channel MOSFET using two-dimensional simulator ISE is simulated. Optimized structure would be realized based on the simulated results for increasing channel mobility.  相似文献   

4.
5.
A nonpolar SiC(1120) substrate has been used to fabricate epitaxial graphene (EG). Two EGs with layer numbers of 8-10 (referred to as MLG) and 2-3 (referred to as FLG) were used as representative to study the substrate effect on EG through temperature dependent Raman scattering. It is found that Raman lineshifts of G and 2D peaks of the MLG with temperature are consistent with that of a free graphene predicted by theory calculation, indicating that the substrate influence on the MLG is undetectable. While Raman G peak lineshifts of the FLG to that of the free graphene are obvious, however, its lineshift rate (-0.016 cm-1/K) is almost one third of that (-0.043 cm-1/K) of a EG on 6H-SiC (0001) in the temperature range from 300 K to 400 K, indicating a weak substrate effect from SiC (1120) on the FLG. This renders the FLG a high mobility around 1812 cm2- ·V-1-·s-1 at room temperature even with a very high carrier concentration about 2.95× 1013 cm-2 (p-type). These suggest SiC (1120) is more suitable for fabricating EG with high performance.  相似文献   

6.
This paper reports on the influence of material defects on the electrical behaviour of AlGaN/GaN heterostructures grown onto off-axis 4H-SiC. A structural characterization revealed the presence of near-surface V-shaped defects, mostly oriented along the miscut direction [11-20]. High electron mobility transistors with the channel oriented along this direction showed a preferential conduction, while a significant reduction of the drain current occurred only along the orthogonal direction. An electrical analysis allowed us to demonstrate the anisotropy of the mobility of the two-dimensional electron gas.  相似文献   

7.
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.  相似文献   

8.
陈刚  柏松  李哲洋  吴鹏  陈征  韩平 《中国物理 B》2009,18(10):4474-4478
In this paper we report on DC and RF simulations and experimental results of 4H--SiC metal semiconductor field effect transistors (MESFETs) on high purity semi-insulating substrates. DC and small-signal measurements are compared with simulations. We design our device process to fabricate n-channel 4H--SiC MESFETs with 100~μm gate periphery. At 30~V drain voltage, the maximum current density is 440~mA/mm and the maximum transconductance is 33~mS/mm. For the continuous wave (CW) at a frequency of 2~GHz, the maximum output power density is measured to be 6.6~W/mm, with a gain of 12~dB and power-added efficiency of 33.7%. The cut-off frequency (fT) and the maximum frequency (fmax) are 9~GHz and 24.9~GHz respectively. The simulation results of fT and fmax are 11.4~GHz and 38.6~GHz respectively.  相似文献   

9.
The effect of in vacuo substrate surface pre-treatment on the growth kinetics and chemical constitution of ultra-thin (<3 nm) oxide films grown on bare Al–1.1 at.% Mg alloy surfaces was studied by a combined experimental approach of real-time in situ spectroscopic ellipsometry (RISE) and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). One alloy surface pre-treatment prior to oxidation consisted of the removal of the native oxide and other contaminants on the alloy surface by sputter-cleaning under UHV conditions. A second surface pre-treatment involved exposing such sputter-cleaned surfaces to a short in vacuo annealing step at 460 K. Next, ultra-thin (<3 nm) oxide films were grown on these two pre-treated alloy surfaces by exposure to O2(g) within the temperature range of T = 300–485 K (at pO2 = 1 × 10?4 Pa). It was found that, as long as the chemical segregation of Mg from the alloy’s interior to the alloy/oxide interface is kinetically hindered, the oxide-film growth kinetics, the developing oxide-film constitution, as well as the local chemical states of the Al and Mg cations in the oxide layer depend strongly on the alloy surface pre-treatment. At T ? 450 K, the thermally-activated interfacial segregation of Mg becomes pronounced and, only then, the developing oxide-film constitution is approximately independent of the surface pre-treatment.  相似文献   

10.
This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5~wt% to 2~wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2~wt% can reach 5.78× 10^-3~cm2/Vs which is higher by a factor of 13 than that with 0.5~wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09~cm2/Vs by thermal annealing at 150~℃, and the value of on/off current ratio can reach 10^4.  相似文献   

11.
A-plane GaN films are deposited on(302) γ-LiAlO 2 substrates by metalorganic chemical vapor deposition(MOCVD) . The X-ray diffraction(XRD) results indicate that the in-plane orientation relationship between GaN and LAO substrates is [010] LAO [0001] GaN and [203] LAO [1100] GaN with 0.03% and 2.85% lattice mismatch,respectively. Raman scattering results indicate that the strain in the films decreases along with the increase in the thickness of the films. In addition to the band edge emission at 3.42 eV,defects-related luminescence at 3.35 eV is observed in the photoluminescence(PL) spectra. The cathodoluminescence(CL) spectra indicate that the 3.35-eV emission is related to the V pits.  相似文献   

12.
A method of clarifying bioaerosol particles is proposed based on T-matrix. Size and shape characterizations are simultaneously acquired for individual bioaerosol particles by analyzing the spatial distribution of scattered light. The particle size can be determined according to the scattering intensity,while shape information can be obtained through asymmetry factor(AF) . The azimuthal distribution of the scattered light for spherical particles is symmetrical,whereas it is asymmetrical for non-spherical ones,and the asymmetry becomes intense with increasing asphericity. The calculated results denote that the 5 –10 scattering angle is an effective range to classify the bioaerosol particles that we are concerned of. The method is very useful in real-time environmental monitoring of particle sizes and shapes.  相似文献   

13.
A series of metamorphic high electron mobility transistors (MMHEMTs) with different Ⅴ/Ⅲ flux ratios are grown on CaAs (001) substrates by molecular beam epitaxy (MBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum Ⅴ/Ⅲ ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm^2/(V.s) and 3.26×10^12cm^-2 respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the Ⅴ/Ⅲ ratio, for which the reasons are discussed.  相似文献   

14.
李敏  张俊英  张跃  王天民 《中国物理 B》2012,21(6):67302-067302
The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of-1.69 eV, whereas the 02 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cul site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the 02 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the 02 molecule on the surface.  相似文献   

15.
Ternary Se90Te10−xSnx (x=2, 4, 6, and 8) chalcogenide glassy alloys have been prepared by melt quenching technique. Various crystallization parameters, such as onset (Tc) and peak (Tp) crystallization temperatures, activation energy of crystallization (Ec) and Avrami exponent (n) have been determined for these alloys. Tc and Tp have been determined directly from the non-isothermal differential scanning calorimeter (DSC) thermograms. The value of Ec has been calculated from the variation of both Tc and Tp with the heating rate (β) according to Kissinger, Takhor, Augis–Bennett and Ozawa models while Augis–Bennett method has been used to deduce the value of n for the studied samples. The obtained values of the crystallization parameters have been correlated with the character and the energy of the chemical bonds through the calculation of the heteronuclear bond energies of the constituent atoms using Pauling principle. In addition to that, Tichy–Ticha model was used to estimate the mean bond energy of the average cross-linking per atom 〈Ecl〉, the average bond energy per atom of the remaining matrix 〈Erm〉, and the overall mean bond energy 〈E〉 of the studied glasses. Results reveal that both of Tc and Tp decreases with increases Sn content. This is may be attributed to the decreasing in the overall mean bond energy 〈E〉. Besides, the plot of Ec (and also Tg) against 〈E〉 was found to be non linear, which contradicts the well known linear correlation between Ec and Tg with 〈E〉 as suggested by Tichy–Ticha model. This discrepancy may be due to the fact that the Tichy–Ticha linear correlation model was based on the assumption of covalent glassy network, while in the present glassy alloys, Se–Te binary doped with heavy elements such as Sn exhibit iono-covalent bonding. The calculated values of the ionicity are in support of this argument.  相似文献   

16.
This work strived to model the effect of surface oxidization and nitridation on the normal spectral emissivity of Ti–6Al–4V alloys at a temperature range of 800–1100 K and a wavelength of 1.5 μm. In experiments, the detector was as close to perpendicular to the surface of the specimens as possible so that only the normal spectral emissivity was measured. Two thermocouples were symmetrically welded near the measuring area for accurate measuring and monitoring of the temperature at the surface of the specimen. The specimens were heated for 6 h at a certain temperature. During this period, the normal spectral emissivity values were measured once every 1 min during the initial 180 min, and once every 2 min thereafter. The measurements were made at certain temperatures from 800 to 1100 K in intervals of 20 K. One strong oscillation in the normal spectral emissivity was observed at each temperature. The oscillations were formed by the interference between the radiation stemming from the oxidization and nitridation layer on the specimen surface and radiation from the substrate. The uncertainty in the normal spectral emissivity caused only by the surface oxidization and nitridation was found to be approximately 9.5–22.8%, and the corresponding uncertainty in the temperature generated only by the surface oxidization and nitridation was approximately 6.9–15.5 K. The model can reproduce well the normal spectral emissivity, including the strong oscillation that occurred during the initial heating period.  相似文献   

17.
18.
于永江  徐强  徐秀玮 《中国物理 B》2011,20(12):123402-123402
The N+H2 reaction has attracted a great deal of attention from both the experimental and the theoretical community, and most of the attention has been paid to the first excited state N(2D) atoms in collisions with hydrogen molecules and the scalar properties of the reaction. In this paper, we study the stereo dynamical properties and calculate the reaction cross sections of the N(4S) + H2 (v=0, j=0, 2, 5, 10) → NH(X3Σ-) + H using the quasi-classical trajectory (QCT) method on an accurate NH2 potential energy surface (PES) reported by Poveda and Varandas [Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867], in a collision energy range of 25 kcal·mol-1-140 kcal·mol-1. Results indicate that the reactant rotational excitation and initial collision energy both have a considerable influence on the distributions of the k-j′ correlation, the k-k′-j′ correlation and k-k′ correlation. The differential cross section is found to be sensitive to collision energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号