首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson mode coupling. In the analytic modeling, we operate an algorithm to consider the Robinson instabilities. To study the evolution of unstable behavior, simulations have been performed in which macroparticles are distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the harmonic cavity.  相似文献   

2.
A passive higher harmonic cavity (HHC) will be used in the Hefei Light Source II Project (HLS-Ⅱ) to lengthen the bunch and consequently increase the beam lifetime dominated by Touschek scattering. The effects of constant voltage and constant detuning have been calculated and compared over the operating current from 0.4 to 0.2 A on the bunch lengthening for the passive normal conducting harmonic cavity system in HLS-Ⅱ. The results show that the bunch shape has less change and the lifetime improvement factors are not less than 2.7 over the beam currents for the constant voltage case. The constant voltage operating scheme may be applied to our machine.  相似文献   

3.
The utility of a passive fourth-harmonic cavity plays a key role in suppressing longitudinal beam instabilities in the electron storage ring and lengthens the bunch by a factor of 2.6 for the phase Ⅱ project of the Hefei Light Source (HLS Ⅱ ). Meanwhile, instabilities driven by higher-order modes (HOM) may limit the performance of the higher-harmonic cavity. In this paper, the parasitic coupled-bunch instability, which is driven by narrow band parasitic modes, and the microwave instability, which is driven by broadband HOM, are both modeled analytically. The analytic modeling results are in good agreement with those of our previous simulation study and indicate that the passive fourth-harmonic cavity suppresses parasitic coupled-bunch instabilities and microwave instability. The modeling suggests that a fourth-harmonic cavity may be successfully used at the HLS Ⅱ .  相似文献   

4.
A simulation code that executes the tracking of longitudinal oscillations of the bunches for the double rf system of the Hefei Light Source Ⅱ Project (HLS-Ⅱ) is presented to estimate the mean beam lifetime and the Robinson instabilities. The tracking results show that the mean beam lifetime is in agreement with the analytical results and the system is stable when we tune the harmonic cavity in the optimum lengthening conditions. Moreover, the simulated results of the asymmetric fill pattern show that some bunches are compressed only with a 7% gap (3 gaps), which will lead to the reduction in the mean bunch lengthening and potential beam lifetime. It is demonstrated that HLS-Ⅱ with a passive higher harmonic cavity is not suitable for operating in an asymmetric fill pattern.  相似文献   

5.
6.
周静  沈萌  杜澜  邓彩松  倪海彬  王鸣 《中国物理 B》2016,25(9):97301-097301
In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.  相似文献   

7.
In the upgrade project of Hefei Light Source(HLSⅡ),a new digital longitudinal bunch-by-bunch feedback system will be developed to suppress the coupled bunch instabilities in the storage ring effectively.We design a new waveguide overloaded cavity longitudinal feedback kicker as the feedback actuator.The beam pipe of the kicker is a racetrack shape so as to avoid a transition part to the octagonal vacuum chamber.The central frequency and the bandwidth of the kicker have been simulated and optimized to achieve design goals by the HFSS code.A higher shunt impedance can be obtained by using a nose cone to reduce the feedback power requirement.Before the kicker cavity was installed in the storage ring,a variety of measurements were carried out to check its performance.All these results of simulation and measurement are presented.  相似文献   

8.
A third harmonic superconducting niobium cavity has been proposed for installation in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring to improve the Touschek lifetime. In order to investigate the feasibility of the superconducting cavity fabrication indigenously and the possibility to master the fabrica tion techniques, cavities were fabricated from copper and niobium sheets by deep drawing and electron-beam welding, and a series of measurements, such as resonant frequency, shape dimensions and wall thickness, were carried out during this process. After analysis of various problems existing in the fabrication process, technique improvements were proposed, and finally the precise shape as designed and resonant frequency within 1.2 MHz were achieved for the new completed cavities. In addition, full annealing was finally proved to be a good cure for niobium sheets' tearing up during deep drawing. By fabricating niobium cavities successfully, some problems to the next step were cleared. This paper introduces the process of cavity fabrication and its technique improvements towards forming, and the initial vertical test result of niobium cavity is also presented.  相似文献   

9.
杨贞标  吴怀志  苏万钧 《中国物理》2007,16(9):2563-2568
In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement, it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.  相似文献   

10.
The DC superconducting injector will be used in the PKU-THz facility which consists of a DC-gun and a 3+1/2-cell superconducting cavity. The cavity must accelerate the electron beam to 5.82 MeV which is susceptible to perturbations because of its narrow bandwidth. In this paper, the sources and influences of the perturbations in the 3+1/2-cell cavity are discussed. It is shown that the control system is essential for the cavity. The design of a feedback based digital RF low level control system for the 3+1/2-cell cavity is accomplished.  相似文献   

11.
Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier.Meanwhile higher modes,which affect the working mode,are also easy to excite in a device with more middle cavities.In order for the positive feedback process for higher modes to be excited,a special measure is taken to increase the threshold current for such modes.Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current.So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV.Particle in cell simulations show that the gain is 1.6×105 with the input RF power of 6.8 kW,and that the output RF power reaches 1.1 GW.  相似文献   

12.
Mode control in a high-gain relativistic klystron amplifier   总被引:1,自引:0,他引:1  
Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 10^5 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.  相似文献   

13.
The existence of decoherence-free subspace (DFS) has been discussed widely. In this paper, we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits. The atoms are divided into two pairs and trapped in two separate optical cavities. Manipulation of atoms within DFS may generate a two-atom maximally entangled state in an individual cavity, which is a stable state. After driving the system out of DFS, the atoms will interact resonantly with the cavity field. The photons leaking from the cavities interfere at the beamsplitter, which destroys which-path information, and are finally detected by one of the detectors, leading to the generation of a W state. In addition, the numerical simulation indicates that the fidelity of the prepared state can, for a very wide parameter regime, be very close to unity.  相似文献   

14.
Higher harmonic cavity used in the third generation synchrotron light source increases the Touschek lifetime. The higher harmonic cavity of Shanghai Synchrotron Radiation Facility (SSRF) is a 1.5GHz passive superconducting cavity. Its higher order modes (HOM) are extracted by a ferrite HOM damper out of the cryostat. Multi-cell cavity is chosen concerning the voltage. The harmonic cavity dynamics, beam dynamics with passive harmonic cavity and the design of single cell cavity are included in this paper.  相似文献   

15.
In the present work, a Cz-Silicon wafer is implanted with helium ions to produce a buried porous layer, and then thermally annealed in a dry oxygen atmosphere to make oxygen transport into the cavities. The formation of the buried oxide layer in the case of internal oxidation (ITOX) of the buried porous layer of cavities in the silicon sample is studied by positron beam annihilation (PBA). The cavities are formed by 15 keV He implantation at a fluence of 2×10^16 cm^-2 and followed by thermal annealing at 673 K for 30 min in vacuum. The internal oxidation is carried out at temperatures ranging from 1073 to 1473 K for 2 h in a dry oxygen atmosphere. The layered structures evolved in the silicon are detected by using the PBA and the thicknesses of their layers and nature are also investigated. It is found that rather high temperatures must be chosen to establish a sufficient flux of oxygen into the cavity layer. On the other hand high temperatures lead to coarsening the cavities and removing the cavity layer finally.  相似文献   

16.
An RF pulse compressor is a device used to convert a long RF pulse to a short one with a much higher peak RF magnitude. SLED can be regarded as the earliest RF pulse compressor to be used in large-scale linear accelerators. It has been widely studied around the world and applied in the BEPC and BEPCⅡ linac for many years. During routine operation, error and jitter effects will deteriorate the performance of SLED, either on the output electromagnetic wave amplitude or phase. The error effects mainly include the frequency drift induced by cooling water temperature variation and the frequency/Q0/β unbalances between the two energy storage cavities caused by mechanical fabrication or microwave tuning. The jitter effects refer to the PSK switching phase and time jitters. In this paper, we re-derive the generalized formulae for the conventional SLED used in the BEPCⅡ linac, and the error and jitter effects on SLED performance are also investigated.  相似文献   

17.
Using the Hefei Light Source phase Ⅱ project (HLS- Ⅱ) as an example, a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity (HHC) is given. The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed. The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented. The calculated results show that the reduced bunch length is about half that of the nominal bunch. The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario, while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario. In addition, the synchrotron frequency spread is increased. It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.  相似文献   

18.
A potential scheme is proposed to deterministically generate complete sets of entangled photons in the context of cavity quantum electrodynamics (QED). The scheme includes twice interactions of atoms with cavities, in which the first interaction is made in two-mode optical cavities and the second one exists in a microwave cavity. In the optical cavities the atoms are resonant with the cavity modes, while the detuned interaction of the atoms with a singlemode of the microwave cavity is driven by a classical field. The favorable features of our scheme include : ( 1 ) it is very straightforward in implementation because we carry out the scheme by only sending atoms through the cavities. The requirement for the implementation is very close to the reach of current cavity QED techniques. (2) The com- plete set of the entangled two- or more-photon states can be generated deterministically by our scheme, and the implementation time remains constant with the size of the entangled photon states. (3) Our scheme is more efficient than previous proposals with cavities, and the generated photons may be collected much more efficiently, due to cavities, than previous proposals by spontaneous emission.  相似文献   

19.
Using the Hefei Light Source phaseⅡproject(HLS-Ⅱ)as an example,a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity(HHC)is given.The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed.The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented.The calculated results show that the reduced bunch length is about half that of the nominal bunch.The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario,while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario.In addition,the synchrotron frequency spread is increased.It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.  相似文献   

20.
孟凡  余重秀  邓云逸  苑金辉 《中国物理 B》2012,21(4):44202-044202
The performances of a dual-pump parametric and Raman amplification process and the wavelength conversion in silicon waveguides are investigated. By setting the Raman contribution fraction f to be 0.043 in our analytical model, the amplification gain of the probe signal can be obtained to be over 10 dB. The pump transfer noise (PTN), the quantum noise (QN), and the total noise figure (TNF) are discussed, and the TNF has a constant value of about 4 dB in the gain bandwidth. An idler signal generated during the parametric amplification (PA) process can be used to realize the wavelength conversion in wavelength division multiplexing (WDM) systems. In addition, the pump signal parameters, the generated free carrier lifetime and effective mode area (EMA) of the waveguide are analysed for the optimization of signal gain and noise characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号