共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schr¨odinger-KdV equations(CSKE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral(MSFP)scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank–Nicholson(CN) method.Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method. 相似文献
2.
The energy preserving average vector field(AVF) method is applied to the coupled Schro¨dinger–KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants. 相似文献
3.
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge-Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method. 相似文献
4.
A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrdinger system 下载免费PDF全文
We derive a new method for a coupled nonlinear Schrdinger system by using the square of first-order Fourier spectral differentiation matrix D1 instead of traditional second-order Fourier spectral differentiation matrix D2 to approximate the second derivative.We prove the proposed method preserves the charge and energy conservation laws exactly.In numerical tests,we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions.Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws.These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm. 相似文献
5.
An improved element-free Galerkin method for solving the generalized fifth-order Korteweg–de Vries equation 下载免费PDF全文
In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method. 相似文献
6.
The(3+1)-dimensional variable-coefficient nonlinear Schr?dinger equation with linear and parabolic traps is studied, and an exact Kuznetsov–Ma soliton solution in certain parameter conditions is derived. These precise expressions indicate that diffraction and chirp factors influence phase, center and widths, while the gain/loss parameter only affects peaks. By adjusting the relation between the maximum accumulated time Tm and the accumulated time T0 based on maximum amplitude of Kuznetsov–Ma soliton, postpone, maintenance and restraint of superposed Kuznetsov–Ma solitons are investigated. 相似文献
7.
A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schroedinger system 下载免费PDF全文
We derive a new method for a coupled nonlinear Schr/Sdinger system by using the square of first-order Fourier spectral differentiation matrix D1 instead of traditional second-order Fourier spectral differentiation matrix D2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm. 相似文献
8.
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives KleinGordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations. 相似文献
9.
Approximate solution for the Klein Gordon-Schrdinger equation by the homotopy analysis method 下载免费PDF全文
The Homotopy analysis method is applied to obtain the approximate solution of the Klein--Gordon--Schr?dinger equation. The Homotopy analysis solutions of the Klein--Gordon--Schr?dinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution. 相似文献
10.
Exact solution of Schrdinger equation with q-deformed quantum potentials using Nikiforov–Uvarov method 下载免费PDF全文
In this paper,we present the exact solution of the one-dimensional Schrdinger equation for the q-deformed quantum potentials via the Nikiforov–Uvarov method.The eigenvalues and eigenfunctions of these potentials are obtained via this method.The energy equations and the corresponding wave functions for some special cases of these potentials are briefly discussed.The PT-symmetry and Hermiticity for these potentials are also discussed. 相似文献
11.
In this paper,the complex multi-symplectic method and the implementation of the generalized sinhGordon equation are investigated in detail.The multi-symplectic formulations of the generalized sinh-Gordon equation in Hamiltonian space are presented firstly.The complex method is introduced and a complex semi-implicit scheme with several discrete conservation laws(including a multi-symplectic conservation law(CLS),a local energy conservation law(ECL) as well as a local momentum conservation law(MCL)) is constr... 相似文献
12.
In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method. 相似文献
13.
Yaming Chen Songhe Song & Huajun Zhu 《advances in applied mathematics and mechanics.》2014,6(4):494-514
In this paper, we propose two new explicit multi-symplectic splitting methods for the nonlinear Dirac (NLD) equation.
Based on its multi-symplectic formulation, the NLD equation is split into one linear multi-symplectic system and
one nonlinear infinite Hamiltonian system. Then multi-symplectic Fourier pseudospectral method and multi-symplectic Preissmann scheme are employed to discretize the linear subproblem, respectively. And the nonlinear subsystem is solved by a symplectic scheme. Finally, a composition method is applied to obtain the final schemes for the NLD equation. We find that the two proposed schemes preserve the total symplecticity and can be solved explicitly. Numerical experiments are presented to show the effectiveness of the proposed methods. 相似文献
14.
Efficient and accurate numerical methods are presented for computing ground states and dynamics of the three-dimensional (3D) nonlinear relativistic Hartree equation both without and with an external potential. This equation was derived recently for describing the mean field dynamics of boson stars. In its numerics, due to the appearance of pseudodifferential operator which is defined in phase space via symbol, spectral method is more suitable for the discretization in space than other numerical methods such as finite difference method, etc. For computing ground states, a backward Euler sine pseudospectral (BESP) method is proposed based on a gradient flow with discrete normalization; and respectively, for computing dynamics, a time-splitting sine pseudospectral (TSSP) method is presented based on a splitting technique to decouple the nonlinearity. Both BESP and TSSP are efficient in computation via discrete sine transform, and are of spectral accuracy in spatial discretization. TSSP is of second-order accuracy in temporal discretization and conserves the normalization in discretized level. In addition, when the external potential and initial data for dynamics are spherically symmetric, the original 3D problem collapses to a quasi-1D problem, for which both BESP and TSSP methods are extended successfully with a proper change of variables. Finally, extensive numerical results are reported to demonstrate the spectral accuracy of the methods and to show very interesting and complicated phenomena in the mean field dynamics of boson stars. 相似文献
15.
Symmetry reduction and exact solutions of the (3+1)-dimensional Zakharovben Kuznetsov equation 下载免费PDF全文
By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of group invariant solutions is constructed. Then using the associated vector fields of the obtained symmetry, we give the one-, two-, and three-parameter optimal systems of group-invariant solutions. Based on the optimal system, we derive the reductions and some new solutions of the (3+1)-dimensional Zakharov-Kuznetsov equation. 相似文献
16.
<正>We propose a multi-symplectic wavelet splitting method to solve the strongly coupled nonlinear Schrodinger equations.Based on its multi-symplectic formulation,the strongly coupled nonlinear Schr(o|¨)dinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem.For the linear subsystem,the multi-symplectic wavelet collocation method and the symplectic Buler method are employed in spatial and temporal discretization,respectively.For the nonlinear subsystem,the mid-point symplectic scheme is used.Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation. 相似文献
17.
This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect. 相似文献
18.
广义Zakharov-Kuznetsov方程作为一类重要的非线性方程有着许多广泛的应用前景,基于Hamilton空间体系的多辛理论研究了广义Zakharov-Kuznetsov方程的数值解法,讨论了利用Preissmann方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性. 相似文献
19.
王俊杰 《原子与分子物理学报》2013,30(6)
广义Zakharov-Kuznetsov 方程作为一类重要的非线性方程有着许广泛的应
用前景,基于Hamilton 空间体系的多辛理论研究了广义Zakharov-Kuznetsov方程的数值
解法,讨论了利用Preissmann 方法构造离散多辛格式的途径, 并构造了一种典型的半隐
式的多辛格式, 该格式满足多辛守恒律、局部能量守恒律. 数值算例结果表明该多辛离
散格式具有较好的长时间数值稳定性. 相似文献
20.
Symmetry Reductions and Explicit Solutions for a Generalized Zakharov-Kuznetsov Equation 总被引:3,自引:0,他引:3
Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new explicit solutions of the generalized Zakharov-Kuznetsov equation. 相似文献