首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, organic vertical-cavity surface-emitting lasers (VCSELs) with single-mode laser output in the long-wavelength region (~700 nm) of the visible were reported based on the energy transfer between dye pairs consisting of pyrromethene 597 (PM597) and rhodamine 700 (LD700). By co-doping PM597 into the polymeric hosts, the fluorescence intensity of LD700 was enhanced by 30-fold and the photophysical parameters of the donor–acceptor pairs were investigated, indicating the involvement of non-radiative resonance energy transfer processes between PM597 and LD700. Active distributed Bragg reflectors (DBR) were made by alternately spin-coating dye-doped polyvinylcarbazole and cellulose acetate thin films as the high and low refractive index layers, respectively. By sandwiching the active layer with 2 DBR mirrors, VCSEL emission at 698.9 nm in the biological first window (650–950 nm) was observed under the 532-nm laser pulses. The laser slope efficiency and threshold were also measured.  相似文献   

2.
Room-temperature (RT) continuous-wave (CW) performance of modern 1300-nm oxide-confined In(Ga)As/GaAs quantum-dot (QD) vertical-cavity surface-emitting diode lasers (VCSELs) taking advantage of many QD sheets is investigated using our comprehensive self-consistent simulation model to suggest their optimal design. Obviously, quantum dots should be as uniform as possible and as dense as possible to ensure high enough optical gain. Besides, our simulation reveals that efficient and uniform current injection into VCSEL active regions necessary to enhance excitation of the desired fundamental LP01 mode is accomplished in the VCSEL configuration with the broad-area bottom contact and the ring upper one as well as with the oxide aperture localized within the first period of the upper p-type DBR. The doping of the DBR mirrors is chosen as a compromise between their high enough electrical conductivity and low enough free-carrier absorption. The oxide aperture is additionally introducing the radial optical waveguiding. Moreover, our analysis has been concluded that VCSEL active regions should be composed of at least 9 QD sheets to acquire efficient RT CW operation. Furthermore, rather longer optical cavities are recommended in this case because localization of QD sheets should be adjusted to the anti-node positions of the optical cavity standing wave.  相似文献   

3.
We present numerical models of tri-valence erbium ion and thulium ion-co-doped fiber amplifiers pumped by 800-nm and 980-nm lasers. The rate and power propagation equations of the models are numerically solved to analyze the gain as a function of co-doping concentrations, fiber length and signal wavelength. The results reveal that with 800-nm or 980-nm pump, gain competition exists between 1470- and 1530-nm bands, which may arise from the pump absorption competition and complicated energy transfer between the two types of active ions, and the results further show that the gain spectra may cover 305 nm (1375–1680 nm) for 800-nm pump and 160 nm (1400–1560 nm) for 980-nm pump. The doping concentrations and fiber length may be tuned to reduce the ripple of the gain spectra.  相似文献   

4.
The absorption saturation and the laser efficiency of Cr(4+): forsterite were measured with 1064-nm (E || b), 980-nm (E || c), and 780-nm (E || b) pulsed laser pumping. A slope efficiency of 32% was obtained for the 980-nm (E || c) pump wavelength, where the excited-state absorption losses were shown to be negligible.  相似文献   

5.
We have demonstrated wavelength stabilization in an 821-nm AlGaAs three-section tunable distributed Bragg reflector (DBR) semiconductor laser diode (LD) that consists of active, phase-controlled, and DBR regions. We injected two separate, complementary currents into the active and the phase-controlled regions in the DBR-LD to suppress wavelength shift. This modulation method was applied to the LD fundamental wave in a second-harmonic-generation (SHG) laser, and the oscillating wavelength was maintained within the phase-matching acceptance range of the SHG device during modulation. A peak blue-violet light power of 62 mW was obtained for the ideal modulation waveform.  相似文献   

6.
史国柱  关宝路  李硕  王强  沈光地 《中国物理 B》2013,22(1):14206-014206
We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16-μm oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5℃ C-80℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced selfheating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.  相似文献   

7.
We demonstrate in-plane microfabricated Fabry-Perot cavities with cryogenically etched silicon/air distributed Bragg reflector (DBR) mirrors and integrated silicon-on-insulator rib waveguides. Several DBR configurations and cavity lengths were measured. Various devices exhibit Q=26963, FWHM=0.060 nm, finesse F=489, free spectral range FSR=81.7 nm, and DBR mirror reflectance R=99.4%. Thermo-optic tuning over 6.7 nm is also demonstrated.  相似文献   

8.
The properties of the propagating field in multimode photonic crystal waveguides (PCWs) exhibiting no photonic band gaps (PBGs) are investigated. The transmission spectrum shows that the input field can be guided with high efficiency, and resemble index-guided modes owing to the combination of total internal reflection (TIR) and distributed Bragg reflection (DBR). Self-imaging effect happens and the filling fraction determines the beating lengths. The rows of air holes decide DBR coming from the mirrors on both sides of the guiding region, which governs the transmission spectrum. It provides a new way to realize the components for both polarizations by combining PBG and TIR effects in PCWs.  相似文献   

9.
采用光学传输矩阵理论对Al0.5Ga0.5As/AlAs材料分布布喇格反射器(DBR)进行理论研究,分析了-10℃到100℃的范围内,温度变化对不同DBR结构的反射光谱影响.结果表明:随着温度的升高,传统20周期DBR的反射光谱向长波长方向移动,速率约0.05 nm/℃,其中由线热膨胀系数带来的影响小于0.001 nm/℃.当传统DBR的周期数增大时,温度对DBR光谱反射率的影响在减小,同时DBR的反射谱峰值波长发生红移.为了降低温度对DBR反射光谱的影响,提出一种新型的复式DBR结构.分析指出:该复式DBR比传统DBR有更大的反射光谱半峰宽,基本能覆盖同温度的AlGaInP LED电致发光光谱,这对提高LED的出光效率有现实意义.  相似文献   

10.
Optically transparent Er3+-doped tellurite-based nanocrystallized glasses with the composition of 70TeO2·15Lie2O·0·15Nb2O5·0.5Er2O3(mol)have been perpared by a conventional melting quenching and the subsequent heat treatment porcesses.The sizes of grown nanocrystals in glass matrix appear to be35-50 nm from the X-ray diffraction (XRD) measurement. The microhardness measurement shows that the Vickers hardness values of the nanocrystallized tellurite glasses are larger (33%-62%) than those inthe base glass. The Raman spectra imply that the maximum phonon energy of the based glass decreases and shifts from 668 to 638 cm-1 after heat-treatment. Visible upconversion luminescence and infrared luminescence of the base glass and heat-treated glasses under 980-nm laser diode (LD) excitation are investigated. The 524-, 546- and 656-nm upconversion intensities by 980-nm pumping increase significantly.  相似文献   

11.
The superfluorescent Yb-doped fiber source operating near 980 nm is studied. The design requirement is theoretically discussed aiming to suppress the amplified spontaneous emission around 1030 nm in the 980-nm superfluorescent fiber source. Based on the theoretical study, a multi-Watt, all-fiber, bi-directional, pumped, superfluorescent source operating near 980 nm is designed and experimentally demonstrated for the first time, to the best of our knowledge. The recorded 8.38-W combined output power is obtained with a 3-dB bandwidth about 3.5 nm. The power scaling of the 980-nm superfluorescent fiber source is limited by the parasitic laser oscillation.  相似文献   

12.
The upconversion luminescences of YAlO3:Er3+ phosphor co-doping with different Gd3+ concentrations are investigated under the excitation of 980- and 532-nm diode lasers. A near ultraviolet upconversion emission at 410 nm is observed in YAlO3 under 532-nm excitation. Moreover, the inactive Gd3+ ions can improve the upconversion intensity efficiently in a certain range of concentration. Under 980-nm excitation, the visible upconversion emissions at 546 and 646 nm are enhanced by about 10 and 8 times at the Gd3+ concentration of 40%, respectively. The upconversion emission at 410 nm under 532-nm excitation is also enhanced by 7 times. The substitution of Gd3+ ions for Y3+ sites changes the local symmetry of Er3+, leading to the improvement of upconversion efficiency.  相似文献   

13.
Numerical simulation of blood vessel heating is used to select the most efficient and safe methods of laser treatment of “port-wine stains”. Selective heating under radiation is calculated for a 980-nm diode laser, a Nd:YAG laser, a copper vapor laser (CVL), and a pulsed dye laser (PDL). The energy exposure range (fluence), the diameter and depth of vessels, at which their selective heating to the coagulation temperature is possible, are determined.  相似文献   

14.
1IntroductionErbium/Yterbiumcodopedfibersareidealgainmediaforconstructingsinglefrequencyfiberlasers.Theirbroadabsorptionband...  相似文献   

15.
A resonant cavity-enhanced (RCE) quantum dot (QD) field-effect transistor (RCEQDFET) is designed for single- photon detection in this paper. Adding distributed Bragg reflection (DBR) mirrors to the single-photon detector (SPD), we improve the light absorption efficiency of the SPD. The effects of the reflectivity of the mirrors, the thickness and light absorption coefficient of the absorbing layer on the detector's light absorption efficiency are investigated, and the resonant cavity is determined by using the air/semiconductor interface as the mirror on the top. Through analyzing the relationship between the refractive index of AlxGal_xAs and A1 component, we choose A1As/Alo.15Gao.85As as the material of the mirror on the bottom. The pairs of A1As/Alo.15Gao.85As film are further determined to be 21 by calculating the reflectivity of the mirror. The detector is fabricated from semiconductor heterostructures grown by molecular beam epitaxy. The reflection spectrum, photoluminescence (PL) spectrum, photocurrent response, and channel current of the detector are tested and the results show that the RCEQDFET-SPD designed in this paper has better performances in photonic response and wavelength selection.  相似文献   

16.
微腔有机电致发光器件的谐振腔反射镜性能   总被引:3,自引:2,他引:1       下载免费PDF全文
根据微腔原理运用传输矩阵法对构成微腔有机电致发光器件(MOLED)谐振腔的两个反射镜进行模拟计算并比较,可观察到:随金属反射镜的反射率增大,微腔器件的电致发光(PL)谱的半峰全宽(FWHM)逐渐窄化;峰值逐渐蓝移至设计的谐振峰值520nm处;峰值强度和光谱积分强度逐渐增强。结果表明:金属反射镜反射率越大越好。随DBR反射镜的周期数从1增加到9,EL的峰值均为520nm,半峰全宽逐渐窄化,积分强度逐渐减弱;峰值强度由弱增强再减弱,4个周期时峰值强度最大,所以设计微腔器件时,DBR的周期是一项很重要的参数。DBR反射率太大不利于出光,太小微腔效应小。需要根据制作目的和需要进行合理选择。  相似文献   

17.
Blue light with a cw power in excess of 42 mW is generated from a frequency-doubled, extended-cavity InGaAs/GaAs 980-nm surface-emitting laser by use of a periodically poled KTP crystal.  相似文献   

18.
The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated. The HfO 2 /SiO 2 dielectric mirrors are deposited by electron beam evaporation(EBE) . Laser damage testing is carried out on both the 1-on-1 and S-on-1 regimes using 355-nm pulsed laser at a duration of 8 ns. It is found that the single-shot laser-induced damage threshold(LIDT) is much higher than the multi-shot LIDT. In the multi-shot mode,the main factor influencing LIDT is the accumulation of irreversible laser-induced defects and native defects. The surface morphologies of the samples are observed by optical microscopy. Moreover,the number of laser-induced defects affects the damage probability of the samples. A correlative model based on critical conduction band(CB) electron density(ED) is presented to simulate the multi-shot damage behavior.  相似文献   

19.
本文在Ga N基共振腔发光二极管(RCLED)顶部设计制备了高反膜结构分布式布拉格反射镜(DBR)和滤波器结构DBR,对比分析了两种反射镜的反射率曲线特征以及对应的RCLED器件的光输出纵模模式、光谱线宽和输出光强等性能差异,详细研究了顶部反射镜的光反射特性对RCLED器件输出光谱性能的影响机理.研究结果表明,顶部反射镜是RCLED的重要组成部分,其反射率曲线特征决定器件的光输出性能.常规高反膜结构DBR顶部反射镜的反射率曲线具有较宽的高反射带,将其作为顶部反射镜可有效压窄RCLED发光纵模线宽,但是发光光谱仍呈现多纵模光输出特征.滤波器结构DBR顶部反射镜的反射率曲线在中心波长处具有较窄的透光凹带,利用透光凹带对输出光的调制作用,器件可实现单纵模光输出,在光通信、光纤传感等领域展示了广阔的应用前景.通过进一步设计RCLED顶部反射镜结构,可以改变其反射率曲线特性,进而优化RCLED器件的输出光谱特性,以满足器件在多个领域的应用需求.  相似文献   

20.
王海龙  秦文华 《发光学报》2007,28(2):225-230
时域有限差分(FDTD)法计算表明,在常规的水平半导体/空气分布布喇格反射器(DBR)设计中为了得到高反射率,DBR中侧墙与衬底垂直非常重要。对于GaN基材料DBR侧墙如果有3°的倾斜,反射率将下降到30%左右,然而在实验上很难得到侧墙与衬底垂直的GaN基DBR结构。考虑到侧墙倾斜问题我们提出了新的DBR设计方法,采用这种方法即使DBR侧墙有较大的倾斜也可以得到高的反射率。设计的关键是在侧墙倾斜的情况下保持每个DBR周期光程差与垂直情况下一致,根据光的干涉原理我们给出了详细的解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号