首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomolecules encapsulated in carbon nanotubes (CNTs) have attracted much interest and facilitated exciting opportunities for biological and biomedical applications of CNTs. Understanding the fundamental interaction and change in biomolecules during encapsulation is indispensable but remains a challenge for both theoretical and experimental investigations. This paper focuses on the interaction between HIV replication inhibitor peptide (HRIP) and CNTs in a neutral solution with molecular dynamics simulation. We observed that HRIP spontaneously inserts into the CNTs and oscillates around the center of the tube, where the non-covalent interaction is minimum. The effects of the diameters of the CNTs on HRIP were investigated. The optimal diameter of the CNT that can provide the most effective encapsulation and causes minimum conformational change in HRIP was found. The present results provide valuable insights in the understanding of nanoscale drug delivery using CNT-based devices.  相似文献   

2.
We perform total-energy electronic-structure calculations of a water molecule inside a (7, 7) carbon nanotube/boron nitride nanotube (CNT/BNNT) heterojunction. The van der Waals interaction is also considered in this study. We find that the equilibrium distance between the water molecule and the wall of the CNT (BNNT) is ≈ 3.3 Å, and the encapsulation energy is 0.22 eV (0.25 eV). The energy profile along the tube axis exhibits a dramatic change in the vicinity of the heterojunction. A speed change of water flow is expected to occur near the heterojunction. Such information would provide valuable insight in nanostructure design for nanofluidics.  相似文献   

3.
The diffusion dynamics and structure evolvement of the transition metal (TM=Ni, Cu, Au, and Pt) atoms decorating carbon nanotubes (CNTs) with differences have been systematically studied by Monte Carlo (MC) simulation. The studies show that TM atoms can be encapsulated inside, aggregated and even wrapped on the surface of the CNT, which depend on the interactions among TM–TM and TM–C during the spontaneous diffusion process. The decorating effect is greatly influenced by the diameters of CNTs, TM atoms tend to be encapsulated inside the tube in the relatively large CNTs, while they are inclined to stack on the surface for the small ones. More interestingly, Au and Pt atoms would wrap around the smaller CNT, whereas Ni and Cu atoms are still clustering outside of the CNTs with the increase of the number of TM atoms. Simulation results indicate that Pt and Au possess a better wetting effect with CNT than Ni and Cu.  相似文献   

4.
Anode material for lithium-ion battery based on Sn/carbon nanotube (CNT) composite is synthesized via a chemical reduction method. The Sn/CNT composite is characterized by thermogravimetry, X-ray diffraction, and transition electron microscopy. The Sn/CNT composite delivers high initial reversible capacity of 630.5 mAh g?1 and exhibits stable cycling performance with a reversible capacity of 413 mAh g?1 at the 100th cycle. The enhanced electrochemical performance of the Sn/CNT composite could be mainly attributed to the well dispersion of Sn nanoparticles on CNT and partially filling Sn nanoparticles inside the CNT. It is proposed that the chemical treatment of CNT with concentrated nitric acid, which cuts carbon nanotube into short pieces and increases the amount of oxygen-functional groups on the surface, plays an important role in the anchoring of Sn nanoparticles on carbon nanotube and inhibiting the agglomeration of Sn nanoparticles during the charge–discharge process.  相似文献   

5.
拾取指定长度的半导体性碳纳米管对大规模制造碳纳米管场效应管具有重要意义.本文提出了一种利用原子力显微镜探针和钨针对碳纳米管进行可控长度拾取的方法并进行了碳纳米管导电性分析.在扫描电子显微镜下搭建微纳操作系统,针对切割操作过程中原子力显微镜探针、钨针和碳纳米管的接触情况进行了力学建模和拾取长度误差分析.建立了单根金属性碳纳米管、单根半导体性碳纳米管及碳纳米管束与钨针接触的电路模型,推导了接入不同性质碳纳米管后电路的电流电压特性方程.使用原子力显微镜探针对碳纳米管的空间位姿进行调整,控制钨针对碳纳米管上目标位置进行通电切割,同时获取切割电路中的电流电压数据.实验结果表明,本文提出的方法能够有效控制所拾取碳纳米管的长度,增加碳纳米管与原子力显微镜探针的水平接触长度能够减小碳纳米管形变导致的拾取长度误差,建立的电流电压特性方程能够用于分析碳纳米管的导电性.  相似文献   

6.
Previous energetic considerations have led to the belief that carbon nanotubes (CNTs) of 4 A in diameter are the smallest stable CNTs. Using high-resolution transmission electron microscopy, we find that a stable 3 A CNT can be grown inside a multiwalled carbon nanotube. Density functional calculations indicate that the 3 A CNT is the armchair CNT(2,2) with a radial breathing mode at 787 cm(-1). Each end can be capped by half of a C12 cage (hexagonal prism) containing tetragons.  相似文献   

7.
W.Q. Wu  H.Y. Chen  D.Y. Sun 《Physics letters. A》2013,377(3-4):334-337
Using molecular dynamics simulations, we studied the morphologies of Lennard-Jones liquid encapsulated in carbon nanotubes (CNTs) for a wide range of liquid–CNT interaction, system size and temperature. The morphology of liquid is found to be sensitive to the filling ratio of liquid (a ratio of liquid volume to the available volume of CNT pore) and the liquid–CNT interaction. The ‘phase diagram’, namely by the morphologies versus the liquid–CNT interaction and the filling ratio, is obtained. In most cases, the liquid inside CNTs forms a thin liquid shell attached to a carbon wall when the filling ratio is small. With the increasing of the filling ratio, liquid tends to form droplet. As the filling ratio increases further, liquids form a cylinder with finite length. Finally, the whole inner space of CNT was filled with liquid when the filling ratio is large enough. Current studies could shed light on the adsorption and flow of liquid inside CNTs.  相似文献   

8.
The coalescence of Au13, Au55 and Au147 icosahedral clusters encapsulated inside single walled carbon nanotubes (CNTs) of different diameters are investigated using molecular dynamics simulation with semi-empirical potentials. Three steps needed for the formation of encapsulated nanowires are followed in detail, namely, the penetration of clusters in CNTs, the coalescence between two clusters inside CNTs and their accumulation to form wires. It is suggested that no significant energy barrier is encountered during the penetration of free clusters into CNTs provided the CNT radius is large enough, that is, about 0.3 nm larger than the cluster radius. The relative orientation of clusters imposed by the CNT favors their spontaneous coalescence. After coalescence of two clusters, the Au atoms are rearranged to form new structures of cylindrical symmetry that may be seven fold, six fold, five fold, helical or fcc depending on the CNT diameter. The thermal stability of these structures is discussed and the structural properties of nanowires formed by accumulation of many clusters in CNTs are analyzed in detail. A geometrical method is presented which allows the prediction of the structure of multi-shell helical wires, when knowing only the CNT radius. These modeling results suggest the possibility of synthesizing metallic nanowires with controlled diameter and structure by embedding clusters into nanotubes with suitable diameters.  相似文献   

9.
彭德锋  江五贵  彭川 《物理学报》2012,61(14):146102-146102
采用拉伸分子动力学方法研究了单壁碳纳米管(8, 8)在室温下从硅基板上被剥离的过程.当碳纳米管(CNT)在硅基底上被剥离时, 剥离距离和理想弹簧所测平均剥离力之间呈现一定规律的关系曲线,并出现了较大的正、负峰值. 比较了不同剥离速度下的平均剥离力,并拟合了其峰值与速度的关系. 拉伸分子动力学模拟结果显示,所需剥离力的最大值与速度之间呈现一定的线性关系, 模拟结果同生物物理学上类似的剥离实验结果符合较好,但相比于高分子, CNT和硅(Si)组成的界面吸附性能更强.讨论了碳纳米管长度、 半径及缺陷对剥离过程的影响,研究表明:所需最大的剥离力与CNT的长度无关, 但随CNT半径的增加,需要的最大剥离力线性增加; 5-7-7-5缺陷对剥离力最大值影响较小,而半径变化缺陷会削减最大剥离力. 在原子尺度对未来的试验进行了理论预测,为碳纳米管在硅微电子工业中的应用提供了理论基础.  相似文献   

10.
We report total-energy electronic structure calculations that provide energetics of encapsulation of C60 in the carbon nanotube and electronic structures of the resulting carbon peapods. We find that the encapsulating process is exothermic for the (10,10) nanotube, whereas the processes are endothermic for the (8,8) and (9,9) nanotubes, indicative that the minimum radius of the nanotube for the encapsulation is 6.4 A. We also find that the C(60)@(10,10) is a metal with multicarriers each of which distributes either along the nanotube or on the C60 chain. This unusual feature is due to the nearly free electron state that is inherent to hierarchical solids with sufficient space inside.  相似文献   

11.
Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and networks of CNT bundles positioned via a dielectrophoretic post-synthesis process between the electrodes of a multifinger device. The morphology and structure of the Ni-coated CNT bundles have been characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). By changing the parameters of the electrochemical process, it is possible to modulate the morphological characteristics of the Ni deposits, which can be obtained in form of nanoparticles uniformly distributed along the whole length of the CNT bundles or of Ni thin films. A qualitative study of the nucleation and growth mechanism of Ni onto CNT has been performed using the theoretical model for diffusion-controlled electrocrystallization, and a correlation between growth mechanism and samples morphology is presented and discussed. The possibility to maintain the architecture of the pristine nanotube deposits after the Ni coating process opens new perspectives for integration of CNT/Ni systems in magnetic and spintronics devices.  相似文献   

12.
Carbon nanotube (CNT) bundles were synthesized on pointed bulk electrodes using femtosecond laser nonlinear lithography. A resist mask of 1.5 μm diameter was formed on a pointed bulk cathode by translating a laser focus three-dimensionally inside the spherical photoresist. Metal masks obtained by pattern transfers of the resists effectively suppressed CNT growth during plasma-enhanced chemical vapor deposition, resulting in synthesis of CNT bundles only at the electrode tip. Irradiation of field emission currents from the pointed cathode enables local melting and subsequent removal of anode materials. The damaged region size and the threshold voltage for this removal process were reduced by spatial limitations of emission sites using the metal mask.  相似文献   

13.
We have investigated model schematics for a long fine single-wall carbon nanotube growth inside a larger diameter nanotube. Our proposed schematics are as follows: fullerenes are encapsulated into the nano-channel connected with fullerene storage tank; and then a inner nanotube grows via fullerene coalescence under 1200 °C in the nano-channel. Then the grown carbon nanotube is extracted from the nano-channel by mechanical control. We have investigated fullerene mergence inside single-wall carbon nanotube using classical molecular dynamics simulations based on the Tersoff–Brenner potential and the Lennard–Jones potential. During fullerene-encapsulating, since the fullerenes naturally have the kinetic energies due to the suction force and can be also accelerated by external force fields to improve the fullerene encapsulation rate, they can be migrated toward the other side of the nano-channel with kinetic energies. Our molecular dynamics simulations showed that the structural relaxation of dynamically free atoms affected on the growth of inner carbon nanotube rather than the Stone-Wales transformations. Since the broken bonds make the structural relaxation during merging to be easily achieved from the migration of carbon atoms or carbon chains, the inner nanotube grows via the re-bonding-reactions of dynamically free carbon atoms or chains as well as the Stone-Wales transformations. We could conclude that the growth rate of the inner CNT could be increased when bond-breakings between carbon atoms of fullerenes were easily achieved.  相似文献   

14.
The molecular bridging between carbon nanotube (CNT) within the meta matrix is hopeful for enhancing nanocomposite's mechanical performance. One of the main problems for nanocomposites is the inadequate bonding between nonstructural reinforcement and meta matrix. Ni-coating on CNT is an effective method to overcome the drawback of the inadequate strength, but the enhancing mechanism has not well interpreted yet. In this paper, the enhancing mechanism will be interpreted from the molecular-dynamics insights. The pullout process of CNT and Ni-coated CNT against copper matrix is investigated. The effects of geometric parameters, including CNT length and diameter, are taken into considerations and discussed. Results show that the interfacial strength is significantly improved after the Ni-coated CNT, which shows a good agreement with the experimental results available in the open literature. Besides, the sliding mechanism of Ni-coated CNTs against copper matrix is much more like a kind of friction sliding and directly related to the embedded zone. However, the pullout force of the CNT without Ni-coating is nearly proportional to its diameter, but independent of embedded length.  相似文献   

15.
The structural, electronic and magnetic properties of hcp transition metal (TM = Fe, Co or Ni) nanowires TM4 encapsulated inside zigzag nanotubes C(m, 0) (m = 7, 8, 9, 10, 11 or 12), along with TM n (n = 4, 10 or 13) encapsulated inside C(12, 0), have been systematically investigated using the first-principle calculations. The results show that the TM nanowires can be inserted inside a variety of zigzag carbon nanotubes (CNTs) exothermically, except from the systems TM4@(7, 0) and TM13@(12, 0) which are endothermic. The charge is transferred from TM nanowires to CNTs, and the transferred charge increases with decreasing CNT diameter or increasing nanowire thickness. The magnetic moments of hybrid systems are smaller than those of the freestanding TM nanowires, especially for the atoms on the outermost shell of the nanowires. The magnetic moment per TM atom of TM/CNT system increases with increasing CNT diameter or decreasing nanowire thickness. Both the density of states and spin charge density analysis show that the spin polarization and the magnetic moments of all hybrid systems mainly originate from the TM nanowires, implying these systems can be applied in magnetic data storage devices.  相似文献   

16.
3D carbon nanotube (CNT)‐based macrostructures are the subject of extensive attention because the outstanding properties of 1D and 2D nanostructures have not been fully translated into key engineering applications. Generation of 3D CNT architectures with covalent junctions could endow the new materials with extraordinary mechanical properties. In this study, detailed experimental characterization and statistical comparison are carried out on 3D boron‐doped multiwalled CNT (CBxMWNT) sponges with covalent junctions and undoped multiwalled CNT (undoped‐MWNT) sponges without junctions. By investigating the plastic, elastic, viscoelastic, and dynamic viscoelastic properties of both sponges, as well as the dependency of these mechanical properties on material morphology, the CBxMWNT sponge is found to be a more predictable and stable material than the undoped‐MWNT sponge. Statistical comparison proves that the excellent properties of the CBxMWNT are attributed to its “elbow‐like” junctions inside the 3D networks, which prevent permanent buckling and bundling of the CNTs under extreme loading. Thus, by optimizing the covalent junctions in 3D CNT sponges, their functional behavior can be controlled and regulated. These findings may promote applications of 3D CNT sponges in various fields, including biomedical or high‐precision devices in which lightweight, controllable, and reliable mechanical properties are always desirable.  相似文献   

17.
18.
To explore a suitable carrier for lamivudine drug, the incorporation of lamivudine inside the single walled carbon nanotubes (SWCNTs) has been investigated by using first-principles van der Waals density functional (vdW-DF) calculations. The obtained binding energies reveal that lamivudine prefers to be encapsulated into the metallic nanotubes with diameter of about 13 Å. Semiconducting SWCNTs exhibit slightly weaker interaction strength with the lamivudine in comparison with the metallic counterparts. However, the calculated binding energies for both considered nanotubes are typical for the physisorption. The influence of nanotube length on the lamivudine incorporation inside the various considered nanotubes has also been investigated and the results show that it plays an important role in the encapsulation process. The electronic structures analysis for the energetically most favorable complexes reveal that incorporated lamivudine changes slightly the electronic properties of SWCNTs. This indicates that there is no considerable hybridization between the corresponding orbitals and the weak interaction obtained quantitatively in terms of binding energies.  相似文献   

19.
碳纳米管/膨润土复合膜的附着性能及场发射性能   总被引:2,自引:2,他引:0       下载免费PDF全文
潘金艳  邵美云 《发光学报》2011,32(3):277-281
碳纳米管(CNT)阴极膜与基底的附着性能严重影响场发射的均匀性和稳定性.提出一种制作CNT/膨润土(BP)复合膜的方法.通过添加纳米尺度BP作为填料,使BP与CNT间产生插层效应,进而减小CNT膜的间隙势牟,改善CNT与基底间的接触性能.测试结果显示,CNT/BP复合膜与基底的附着性能得到明显改善,并且使场发射均匀性和...  相似文献   

20.
制备了一种新型碳纳米管浆料,并总结了一套阴极制作工艺.实验表明,质量比约为10%的纯化碳纳米管、5%的纳米金属粉末和有机材料混合形成的印刷浆料,其阴极具有较好的发射均匀特性.在浆料制备过程中通过加入表面活性剂使碳纳米管分散更加均匀.用丝网印刷技术制作阴极,并用机械刀刻的办法制作阴、栅两极之间的沟槽,经烧结后分析阴极膜的电阻率和粘附性随阴极材料组分和制作工艺的变化关系,确定较为合适的升温曲线及丝网目数,阴极碳纳米管的均匀性、导电性的提高改善了发射均匀性.该阴极开启场为2.5 V/μm,在电场强度为3.3 V/μm下,阳极电流为5.6 μA,场发射电流稳定,波动小于5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号