首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation, we have systematically investigated the theoretical mechanical properties of copper (Cu). The theoretical tensile strengths are calculated to be 25.3 GPa, 5.9 GPa, and 37.6 GPa for the fcc Cu single crystal in the [001], [110], and [111] directions, respectively. Among the three directions, the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes, while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes. In terms of the elastic constants of Cu single crystal, we also estimate some mechanical quantities of polycrystalline Cu, including bulk modulus B, shear modulus G, Young’s modulus E p , and Poisson’s ratio ν.  相似文献   

2.
李莉  邵建立  段素青  梁九卿 《中国物理 B》2011,20(4):46402-046402
By molecular dynamics simulations employing an embedded atom method potential,we have investigated structural transformations in single crystal Al caused by uniaxial strain loading along the [001],[011] and [111] directions. We find that the structural transition is strongly dependent on the crystal orientations. The entire structure phase transition only occurs when loading along the [001] direction,and the increased amplitude of temperature for [001] loading is evidently lower than that for other orientations. The morphology evolutions of the structural transition for [011] and [111] loadings are analysed in detail. The results indicate that only 20% of atoms transit to the hcp phase for [011] and [111] loadings,and the appearance of the hcp phase is due to the partial dislocation moving forward on {111} fcc family. For [011] loading,the hcp phase grows to form laminar morphology in four planes,which belong to the {111} fcc family; while for [111] loading,the hcp phase grows into a laminar structure in three planes,which belong to the {111} fcc family except for the (111) plane. In addition,the phase transition is evaluated by using the radial distribution functions.  相似文献   

3.
文敏儒  王崇愚 《中国物理 B》2017,26(9):93106-093106
Using first-principles density functional calculations, lattice stability of γ-Ni under [001], [110], and [111] uniaxial tensions and the effect of alloying elements Co and Re on the uniaxial tensile behavior of γ-Ni were studied in this paper.With elastic constants and phonon spectra calculations, we examined the mechanical stability and phonon stability of Ni during the uniaxial tensions along the three characteristic directions. The results show that the mechanical stability and phonon stability of a lattice occurs before the maximum stress–strain point under the [001] and [111] tension, respectively.The effects of Co and Re on the ideal tensile strength of γ-Ni show a significant directivity: Co and Re have little effect on the stresses in [001] and [111] directions, but increases the ideal strength of the system in the weakest uniaxial tensile direction. Moreover, the strengthening effect of Re is significantly better than that of Co. By further analyzing electronic structure, it is found that the effect of alloying elements on the uniaxial tensile behavior of γ-Ni comes from their interactions with host atoms.  相似文献   

4.
The local, average and electronic structure of the semiconducting materials Si and Ge has been studied using multipole, maximum entropy method (MEM) and pair distribution function (PDF) analyses, using X-ray powder data. The covalent nature of bonding and the interaction between the atoms are clearly revealed by the two-dimensional MEM maps plotted on (100) and (110) planes and one-dimensional density along [100], [110] and [111] directions. The mid-bond electron densities between the atoms are 0.554 e/?3 and 0.187 e/?3 for Si and Ge respectively. In this work, the local structural information has also been obtained by analyzing the atomic pair distribution function. An attempt has been made in the present work to utilize the X-ray powder data sets to refine the structure and electron density distribution using the currently available versatile methods, MEM, multipole analysis and determination of pair distribution function for these two systems.   相似文献   

5.
Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications.  相似文献   

6.
The temperature dependence of the mean square displacements for atoms on the (100) and (110) surfaces of chromium has been studied theoretically using the harmonic approximation. Calculations were carried out for crystals with periodic boundary conditions in two directions and free boundary conditions in the third direction using a Born-van Karman model with central interactions up to third nearest neighbors and non-central angular stiffness interaction between nearest and next nearest neighbors. The values of the force constants were chosen to give good fits to the elastic constants and to the bulk phonon dispersion curves in the three major directions [100], [110] and [111]. The ratio of the mean-square displacements at a surface to that in the bulk was calculated as a function of temperature for both the (100) and (110) surfaces. The theoretical, results are compared with the available experimental data from low-energy electron diffraction.  相似文献   

7.
The generalized susceptibility, χ(q), in Pd and Pt for q along the [100], [110], [111], and [120] directions was determined from their APW and RAPW energy band structures, respectively, using the analytic tetrahedron linear energy scheme of Rath and Freeman. The band structures were previously found to yield Fermi surface radii, temperature dependencies of the static magnetic susceptibility, χ(T), resistivity, and a spin lattice relaxation, T1T, in very good agreement with experiment. In the χ(q) calculations, we used 2048 tetrahedra in 1/48th irreducible BZ and the energy eigenvalues for bands 4, 5, and 6 which cross the Fermi energy as fitted to a Fourier series representation. The intraband parts of χ(q) at q = 0 for both metals are found to agree with the density of states at the Fermi energy to without 0.5%. Our results show that the dominant contribution to χintra arises from the dominant band 5 whose “jungle-gym” FS has strong nesting features; the main peak for Pd occurs at the same q value (= 0.65π/a) for q along the [0q0], [q, q, 0], and [q, q, q] directions. The locus of this main peak is a square in the (0, 0, 1) plane. The maximum of χintra for q along the [110] and [111] directions are 23% and 13%, respectively, higher than the value of χ(q) at q = 0. For q along the [010] and [120] directions, the peak is, however, lower than the value of χintra at q = 0. Hence, while phonon anomalies are predicted for the [110] and [111] directions, no anomaly is predicted for either the [100] or [120] direction. The predicted q value for the [110] anomaly, q = 0.65π/a is close to the experimental value of ~0.7 π/a. Although there may be a hint of an anomaly at 0.56 [111] in the measurements, a more detailed investigation of this region is called for. For platinum, χintra for q along the [010], [110] and [111] directions has main peaks which occur at q = 0.68 π/a, 0.75 π/a, and 0.85 π/a, respectively. Here too, this main peak comes from the nesting of the jungle-gym Fermi surface which is not, however, as flat as that of palladium. Anomalies are predicted (although weaker in Pt than in Pd) along [110] and [111] but not along [100] and [120]. The [110] anomaly is close to the measured q value (~0.7–0.8 π/a). Also in agreement with experiment, we predict a weaker [110] anomaly for Pt than for Pd. In both Pd and Pt, weaker anomalies are predicted for the [111] direction than for the [110] direction.  相似文献   

8.
基于k·p微扰法研究单轴[110]应力作用下硅的导带结构,获得单轴[110]应力硅的导带底能量及电子有效质量.在此基础上,考虑电子谷间、谷内及电离杂质散射,采用弛豫时间近似计算单轴[110]应力硅沿不同晶向的电子迁移率.结果表明:单轴[110]应力作用下硅的电子迁移率具有明显的各向异性.在[001]、[110]及[110]输运晶向中,张应力作用下电子沿[110]晶向输运时迁移率有较大的增强,由未受应力时的1 450 cm2·Vs-1提高到2 GPa应力作用下的2 500 cm2·Vs-1.迁移率增强的主要原因是电子有效质量的减小,而应力作用下硅导带能谷分裂导致的谷间散射几率的减小对电子迁移率的影响并不显著.  相似文献   

9.
N. Freyer  H.P. Bonzel 《Surface science》1985,160(2):L501-L508
The rate of surface self-diffusion on a Pt(110) single crystal in the [110] and [001] directions was measured at 1200–1750 K by monitoring the decay of a sinusoidal surface profile. The surface diffusion rate in the [11o] direction was much faster than in the [001] direction. The activation energy of surface self-diffusion was 1.70 and 3.16 eV for the [110] and [001] directions, respectively, in good agreement with theoretical estimates. For large amplitudes of the profile the decay rate for the [001] direction was also dependent on the amplitude. This behavior can be explained by the appearance of (111) facets on the profile, which cause a retardation of the profile decay.  相似文献   

10.
The magnetoresistance of single crystal aluminium was measured with the magnetic field in the three main crystallographic directions [100], [110] and [111], in the temperature range 4.2–20 K and in magnetic fields up to 7 T. The exponent of a Tn-law is shown to be decreasing with increasing fields.  相似文献   

11.
This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.  相似文献   

12.
Transmitted wave profiles are presented for A1 single crystals that were loaded along crystallographic directions [100], [110] and [111] by a stress wave of the amplitude 1·85 GPa. The experiments were carried out with the Hopkinson Split Bar Technique. The observed wave profiles strongly depend on the specimen length. The constitutive relation of elastic-plastic-relaxing solid was proposed for the interpretation of obtained results. Mechanical properties can then be inferred by comparing observed rates of decay with theoretical models of stress relaxation.  相似文献   

13.
This paper gives the general expressions for the compliance s′ijkl, Young's modulus E(hkl) and Poisson's ratio v(hkl, θ) along arbitrary loading direction [hkl] for tetragonal crystals. The representation surface for which the length of the radius vector in the [hkl] direction equals E(hkl) and representation curve for which the length of the radius vector with angle θ deviated from the reference directions [001^-], [100], [001^-], [101^-] and [112^-] equals v(100, θ), v(001, θ), v(110,θ), v(101,θ) and v(111, θ) respectively, are constructed for nine tetragonal crystals (ammonium dihydrogen arsenate, ammonium dihydrogen phosphate, barium titanate, indium, nickel sulfate, potassium dihydrogen arsenate, potassium dihydrogen phosphate, tin and zircon). The characteristics of them are analysed in detail.  相似文献   

14.
The phase study of a Cd-Yb 1/1 approximant crystal over a wide pressure and temperature range is crucial for the comparison study between periodic and quasiperiodic crystals. The Cd(4) tetrahedra, the most inner part of the atomic clusters, exhibited various structural ordering in the orientation sensitive to pressure and temperature. Five ordered phases appeared in a P-T span up to 5.2 GPa and down to 10 K. The propagation direction of ordering alternated from [110] to <111> to at about 1.0 GPa and again to [110] at 3.5-4.3 GPa. The primarily ordered phases that appeared by cooling to 210-250 K between 1.0-5.2 GPa further transformed to finely ordered ones at 120-155 K. Besides the original short-range type interaction, a long-range type interaction was likely developed under pressure to lead to the primary ordering of Cd(4) tetrahedra. Coexistence of these interactions is responsible for the complicated phase behavior.  相似文献   

15.
Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and[1?10] directions.  相似文献   

16.
The chemical composition profile across a Cu/MgO {111}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single-phase alloy at 1173 K, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar spacing of the {222} MgO planes. In particular, we demonstrate directly that the bonding across a Cu/MgO {111}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu|O|Mg... and not Cu|Mg|O...; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence, it was established, via high-resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {111} planes with a cube-on-cube relationship between a precipitate and the matrix; that is, {111}Cu//{222}MgO and <110>Cu // <110>MgO.  相似文献   

17.
The theoretical strength of diamond has been calculated for the <100>, <110>, and <111> directions using a first principles approach and is found to be strongly dependent on crystallographic direction. This elastic anisotropy, found at large strains, and particularly the pronounced minimum in cohesion in the <111> direction, is believed to be the reason for the remarkable dominance of the 111 cleavage plane when diamond is fractured. The extra energy required to cleave a crystal on planes other than 111 is discussed with reference to simple surface energy calculations and also the introduction of bond-bending terms.  相似文献   

18.
代月花  潘志勇  陈真  王菲菲  李宁  金波  李晓风 《物理学报》2016,65(7):73101-073101
采用基于密度泛函理论的第一性原理方法, 研究了基于HfO2的阻变存储器中Ag 导电细丝浓度以及方向性. 通过计算Ag杂质5种方向模型的分波电荷态密度等势面图、形成能、 迁移势垒和分波电荷态密度最高等势面值, 发现[-111]方向最有利于Ag导电细丝的形成, 这对器件的开启电压、形成电压和开关比有很大影响. 本文基于最佳的[-111]导电细丝方向, 设计了4 种Ag 浓度结构. 计算4种Ag浓度结构的分波电荷态密度等势面图, 得出Ag浓度低于4.00 at.% 时晶胞结构中无导电细丝形成且无阻变现象. 当Ag浓度从4.00 at.%增加到4.95 at.% 时, 晶胞结构中发现有导电细丝形成, 表明Ag浓度高于4.00 at.%时, 晶胞中可以发生阻变现象. 然而, 通过进一步对比计算这两种晶胞结构中Ag的形成能、分波电荷态密度最高等势面值、总态密度与Ag的投影态密度发现, Ag浓度越大, 导电细丝却不稳定, 并且不利于提高阻变存储器的开关比. 本文的研究结果可为改善基于HfO2的阻变存储器的性能提供一定理论指导.  相似文献   

19.
The effects of hydrostatic pressures on the electronic, thermoacoustic and elastic anisotropies of SnO2 in the rutile structure is analyzed up to 18 GPa. It is found that the polycrystalline bulk modulus B increases from 227 to 312 GPa between 0 and 18 GPa while the Young and shear moduli slightly decrease with pressures. The resulting polycrystalline ductility increases with pressures. The speed of the sound for longitudinal waves increases with pressure, while the transverse polarizations and the Debye temperature decrease. Large crystal anisotropy for the shear planes {001} between ? 110? and ? 010? directions under pressures, associated with the phase transition to the Cl2Ca, is found.  相似文献   

20.
This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5~GPa for bcc Fe, and 48.1, 34.6, 51.2~GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point `bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号