首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 has been recently used to realize high-temperature ferromagnetic semiconductors.In fact,it has been widely used for a long time as white pigment and sunscreen because of its whiteness,high refractive index,and excellent optical properties.However,its electronic structures and the related properties have not been satisfactorily understood.Here,we use Tran and Blaha’s modified Becke-Johnson(TB-mBJ) exchange potential(plus a local density approximation correlation potential) within the density functional theory to investigate electronic structures and optical properties of rutile and anatase TiO2.Our comparative calculations show that the energy gaps obtained from mBJ method agree better with the experimental results than that obtained from local density approximation(LDA) and generalized gradient approximation(GGA),in contrast with substantially overestimated values from many-body perturbation(GW) calculations.As for optical dielectric functions(both real and imaginary parts),refractive index,and extinction coefficients as functions of photon energy,our mBJ calculated results are in excellent agreement with the experimental curves.Our further analysis reveals that these excellent improvements are achieved because mBJ potential describes accurately the energy levels of Ti 3d states.These results should be helpful to understand the high temperature ferromagnetism in doped TiO2.This approach can be used as a standard to understand electronic structures and the related properties of such materials as TiO2.  相似文献   

2.
The electronic structure, electronic charge density and optical properties of the diamond-like semiconductor Ag2ZnSiS4 compound with the monoclinic structure have been investigated using a full-relativistic version of the full-potential augmented plane-wave method based on the density functional theory, within local density approximation (LDA), generalized gradient approximation (GGA), Engel–Vosko GGA (EVGGA) and modified Becke Johnson (mBJ) potential. Band structures divulge that this compound is a direct energy band gap semiconductor. The obtained energy band gap value using mBJ is larger than those obtained within LDA, GGA and EVGGA. There is a strong hybridization between Si-s and S-s/p, Si-p and Zn-s, Ag-s/p and Zn-s, and Ag-s and Ag-p states. The analysis of the site and momentum-projected densities shows that the bonding possesses covalent nature. The dielectric optical properties were also calculated and discussed in detail.  相似文献   

3.
4.
The structural, electronic and optical properties of GaP, BP binary compounds and their ternary alloys Ga1?xBxP (x=0.25, 0.5 and 0.75) have been studied by full-potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT) as implemented in WIEN2k package. Local density approximation (LDA) and generalized gradient approximation (GGA) as proposed by Perdew–Burke–Ernzerhof (PBE), Wu–Cohen (WC) and PBE for solid (PBESol) were used for treatment of exchange-correlation effect in calculations. Additionally, the Tran–Blaha modified Becke–Johnson (mBJ) potential was also employed for electronic and optical calculations due to that it gives very accurate band gap of solids. As B concentration increases, the lattice constant reduces and the energy band gap firstly decreases for small composition x and then it shows increasing trend until pure BP. Our results show that the indirect–direct band gap transition can be reached from x=0.33. The linear optical properties, such as reflectivity, absorption coefficient, refractive index and optical conductivity of binary compounds and ternary alloys were derived from their calculated complex dielectric function in wide energy range up to 30 eV, and the alloying effect on these properties was also analyzed in detail.  相似文献   

5.
D. M. Hoat 《哲学杂志》2019,99(6):736-751
The structural, electronic, optical properties of GaS in bulk and monolayer forms have been studied by means of full-potential linearised augmented plane wave calculations within framework of the density functional theory. Generalised gradient approximation and Tran–Blaha modified Becke–Johnson exchange potential (mBJ) were employed for the treatment of exchange-correlation effect in calculations. Our calculated lattice parameters are in good agreement with previous theoretical results and available experimental data. The negative formation enthalpy and cohesive energy indicate that both bulk and monolayer GaS can be synthesised and stabilised experimentally. Our electronic results show that the band gap of GaS monolayer is higher than that of bulk counterpart and strong hybridisation between electronic states of constituent atoms is observed in both cases. The optical properties such as reflectivity, absorption coefficient, refractive index and optical conductivity were derived from calculated complex dielectric function for wide energy range up to 35?eV. Finally, the thermoelectric properties of GaS bulk and monolayer also were calculated using semi-classical Boltzmann theory within the constant relaxation time approximation for investigating their applicability in thermoelectric devices.  相似文献   

6.
In the present work, we have investigated the structural, electronic and optical properties of SrF2 and CdF2 and their ternary mixed SrxCd1?xF2 alloys at some selected concentrations x (x?=?0.25, 0.50, 0.75 and 1). The parent compounds SrF2 and CdF2 crystallize in Fm-3?m space group, whereas the alloys adopt the cubic structure with Pm-3?m space group for the composition x?=?0.25 and 0.75 and the tetragonal structure with space group P4/mmm for x?=?0.50. The calculations were performed using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was handled with Wu and Cohen GGA approximation (WC-GGA). Moreover, the Engel–Vosko's (EV-GGA) formalism and the modified Becke Johnson (mBJ) approximation were also applied to improve the electronic band structure calculations. The computed structural parameters for SrF2 and CdF2 such as the equilibrium lattice constants and the bulk moduli are in good agreement with the available experimental and theoretical data. It is found that the lattice parameters increase with increasing composition (x) while the bulk modulus decreases for SrxCd1?xF2 alloys. The calculated band structures reveal an indirect band gap (W-Γ), (X-Γ) and (M-Γ) for CdF2, SrF2 and SrxCd1?xF2 for x?=?0.25, 0.75 and x?=?0.5, respectively. The optical constants, including the dielectric function, refractive index, reflectivity, absorption, extinction coefficient and the energy loss function were calculated using both WC-GGA and mBJ schemes for a radiation up to 40?eV. This is the first quantitative theoretical prediction of the optical properties for these alloys that requires experimental confirmation.  相似文献   

7.
The demand for cheaper, nontoxic and earth-abundant materials as absorbing layer for solar cell is immensely needed to replace scarce, toxic and expensive one. In this regard, chalcogenide materials have considerably attracted the attention of a lot of researchers because of showing a great potential for different applications. Stibnite (Sb2S3), a chalcogenide binary material is considerably investigated for exploiting its potential for different energy technologies being a less toxic, abundantly available, stable and efficient, which are the fundamentals for sustainability as well as to realize the dream of green energy. In this study, theoretical calculations of the structural, electronic and optical properties of stibnite (Sb2S3) crystal structure are presented using the full potential (FP) linearized augmented plane wave (LAPW) framed within density functional theory (DFT). To incorporate the exchange-correlation part in the total energy functional, besides the local density approximation (LDA), Wu-Cohen parameterized generalized gradient approximation (WC-GGA), Perdew–Burke–Ernzerhof parameterized generalized gradient approximation (PBE-GGA), and Perdew–Burke–Ernzerhof generalized gradient approximation for solids and surfaces (PBEsol-GGA) are used for the calculations of the structural parameters, where the Trans-Blaha approach of the modified Becke–Johnson (TB-mBJ) potential is used to get more reliable results for the fundamental band gap energy value. These calculations are performed by involving spin-orbit coupling (SOC) contribution. Additionally, optical properties, such as imaginary and real parts of the dielectric function, optical conductivity, absorption coefficient, refractive index, reflectivity, and electron energy loss function are analyzed. Our first-principles calculations show that Wu-Cohen GGA (WC-GGA) reproduces results for lattice parameters comparable to the experimental measurements. The obtained results of the band gap energy and optical properties with TB-mBJ potential are also closer to the experimental data and, endorse its potentiality for the photovoltaics applications.  相似文献   

8.
A theoretical study of structural, electronic and optical properties of cubic BaTiO3 and BaZrO3 perovskites is presented, using the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus, its pressure derivative, band structure, density of states, pressure coefficients of energy gaps and refractive indices. The results are compared with previous calculations and experimental data.  相似文献   

9.
We present the first-ever experimental Compton profiles (CPs) of Sc2O3 and Y2O3 using 740 GBq 137Cs Compton spectrometer. The experimental momentum densities have been compared with the theoretical CPs computed using linear combination of atomic orbitals (LCAO) within density functional theory (DFT). Further, the energy bands, density of states (DOS) and Mulliken's population (MP) data have been calculated using LCAO method with different exchange and correlation approximations. In addition, the energy bands, DOS, valence charge density (VCD), dielectric function, absorption coefficient and refractive index have also been computed using full potential linearized augmented plane wave (FP-LAPW) method with revised functional of Perdew–Becke–Ernzerhof for solids (PBEsol) and modified Becke Johnson (mBJ) approximations. Both the ab-initio calculations predict wide band gaps in Sc2O3 and Y2O3. The band gaps deduced from FP-LAPW (with mBJ) are found to be close to available experimental data. The VCD and MP data show more ionic character of Sc2O3 than Y2O3. The ceramic properties of both the sesquioxides are explained in terms of their electronic and optical properties.  相似文献   

10.
The electronic, structural properties and optical properties of the rutile TiO2 have been reported using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. We employed the generalized gradient approximation (GGA), which is based on exchange-correlation energy optimization to calculate the total energy. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Our results including lattice parameter, bulk modulus, density of states, the reflectivity spectra, the refractive index and band gap are compared with the experimental data. We present calculations of the frequency-dependent complex dielectric function ε(ω) and its zero-frequency limit ε1(0).  相似文献   

11.
First-principles full-potential linearized augmented plane-wave method based on density functional theory is used to investigate the structural, electronic and optical properties of the cubic fluoroelpasolites Cs2NaYF6 within the local density approximation (LDA) and generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke–Johnson (mBJ) potential approximation is also used for calculating the electronic and optical properties of the material. We have analyzed the structural parameters, total and partial densities of states, dielectric functions, absorption and reflectivity. The results show that the band structure of the fluoroelpasolites Cs2NaYF6 has an insulating behavior for the two directions of spin and as a result there is no net magnetic moment. A wide band gap of 9.6 eV is obtained with mBJ-GGA, which allows the application of this material as X-ray storage phosphor materials and scintillators.  相似文献   

12.
The optical properties of rutile and anatase titanium dioxide (TiO2) are calculated from the imaginary part of the dielectric function using pseudopotential density functional method within its generalized gradient approximation (GGA) and a scissors approximation. The fundamental absorption edges calculated for the unit cell of both rutile and anatase are consistent with experimentally reported results of single crystal rutile and anatase TiO2 and with previous theoretical calculations. A significant optical anisotropy is observed in the anatase structure which holds promise for investigating the band gap modification with better visible-light response and provides a reliable foundation for addressing the effect of impurities on the fundamental absorption edge/band gap of anatase TiO2. Further calculations on the electronic structure and the optical properties of C-, N-, and S-doped anatase TiO2 are performed. The results are analyzed and discussed in terms of optical anisotropy and scissors approximations.  相似文献   

13.
<正>The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first-principles calculations.The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound.The optical properties,including complex dielectric function,absorption coefficient,refractive index,reflectivity,and loss function,and the origin of spectral peaks are analysed based on the electronic structures.The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.  相似文献   

14.
《Current Applied Physics》2018,18(10):1113-1121
Structural, electronic, optical, and thermoelectric aspects of chalcopyrite LiGaX2 (X = S, Se and Te) compounds have been investigated by density functional theory (DFT) based Wien2k simulator. The optimized ground state parameters are calculated by Wu-Cohen generalized gradient approximation (WC-GGA) and electronic structures, which have been further improved by modified Becke-Johnson (mBJ) potential. Moreover, a comparative study is given among the contribution of three anions (S, Se and Te) in the same symmetry of tetragonal phase. The calculated band gaps of the studied compounds are 3.39, 2.83, and 1.96 eV for LiGaS2, LiGaSe2 and LiGaTe2, respectively. The observed band gaps consider the studied compounds are potential materials for optoelectronic devices. In addition, the optical response of the studied materials has been analyzed in terms of dielectric constants, refraction, absorption, reflectivity and energy loss function. We have also reported the thermoelectric properties like Seebeck coefficient, thermal and electrical conductivities, and figure of merit as function of temperatures by using BoltzTrap code. The high thermal efficiency and absorption spectra in the visible region make the studied materials multifunctional for energy applications.  相似文献   

15.
The structural, elastic, electronic and optical properties of CaXO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young’s moduli for ideal monocrystalline and for polycrystalline CaXO3 aggregates which we have classified as ductile in nature. Band structures reveal that these compounds are indirect energy band gap (R-G) semiconductors; the analysis of the site and momentum projected densities, valence charge density bond length, bond population and Milliken charges, shows that bonding is of covalent–ionic nature. We have found that the elastic constants C11, C12, C44 are in good correlation with the bonding properties. The optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss, are calculated for radiation up to 20 eV.  相似文献   

16.
By employing first principles method of the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA), the correlation between valence electron concentration and structural, elastic, electronic as well as optical properties of A3SnO and ASnO3 compounds where A=Ca, Sr and Ba are investigated. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young's moduli for ideal monocrystalline and for polycrystalline A3SnO and ASnO3 aggregates. Band structures reveal that alkaline-earth tin oxides A3SnO are direct energy band gap (G-G) materials.The hardness of these compounds was explained using chemical bonding properties and Milliken charges transfer. The optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss, are calculated for radiation up to 20 eV. We have found that the static dielectric constants of all these compounds are in good agreement with Penn model.  相似文献   

17.
Density functional calculations are performed to study the structural, electronic and optical properties of technologically important BxGa1−xAs ternary alloys. The calculations are based on the total-energy calculations within the full-potential augmented plane-wave (FP-LAPW) method. For exchange-correlation potential, local density approximation (LDA) and the generalized gradient approximation (GGA) have been used. The structural properties, including lattice constants, bulk modulus and their pressure derivatives, are in very good agreement with the available experimental and theoretical data. The electronic band structure, density of states for the binary compounds and their ternary alloys are given. The dielectric function and the refractive index are also calculated using different models. The obtained results compare very well with previous calculations and experimental measurements.  相似文献   

18.
A. Gueddim  S. Zerroug 《哲学杂志》2015,95(24):2627-2638
We present first principles calculations of structural, electronic and optical properties of ZnS1?xOx in the zinc-blende phase. We employ the full potential linearized augmented plane wave method within the density functional theory in the generalized gradient approximation and Engel–Vosko generalized gradient approximation. Features such as the lattice constant, the bulk modulus and its pressure derivative are reported. The agreement between our calculated results and available experimental and theoretical data is generally good. Direct and indirect energy band gaps as a function of the oxygen composition in the material of interest are presented and discussed. The material under investigation is found to remain a direct band gap semiconductor over all the alloy composition range (0–1). Furthermore, the optical properties such as the dielectric function, the refractive index, the reflectivity and the electron loss energy have also been reported and analysed.  相似文献   

19.
We report nanoscale ab-initio calculations of the linear optical and electronic properties of LaCrO3 in nonmagnetic cubic and rhombohedral phases using the full potential linear augmented plane wave (FP-LAPW) method. In this work the generalized gradient approximation is used for exchange-correlation potential. The dielectric tensor is derived within random-phase approximation. We present results for the band structure, density of states, imaginary and real parts of dielectric tensor, electron energy loss spectroscopy, sum rules, reflectivity, refractive index and extinction coefficient. The regions of transparent, absorption and reflection are discussed. We are not aware of any published experimental or theoretical data for these phases, so our calculations can be used to cover this lack of data for these phases.  相似文献   

20.
蔡鲁刚  刘发民  钟文武 《中国物理 B》2010,19(9):97101-097101
This paper calculates the structural parameters, electronic and optical properties of orthorhombic distorted perovskite-type TbMnO3 by first principles using density functional theory within the generalised gradient approximation. The calculated equilibrium lattice constants are in a reasonable agreement with theoretical and experimental data. The energy band structure, density of states and partial density of states of elements are obtained. Band structures show that TbMnO3 is an indirect band gap between the O 2p states and Mn 3d states, and the band gap is of 0.48 eV agreeing with experimental result. Furthermore, the optical properties, including the dielectric function, absorption coefficient, optical reflectivity, refractive index and energy loss spectrum are calculated and analysed, showing that the TbMnO3 is a promising dielectric material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号