首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inverse grain-size effect on twinning in nanocrystalline Ni   总被引:1,自引:0,他引:1  
A long-standing controversy exists between molecular dynamics simulations and experiments on the twinning propensity of nanocrystalline (NC) face-centered-cubic metals. For example, three-dimensional molecular dynamics simulations rarely observed twins in NC Ni, whereas experiments readily observed them. Here this discrepancy is resolved by experimental observation of an inverse grain-size effect on twinning. Specifically, decreasing the grain size first promotes twinning in NC Ni and then hinders twinning due to the inverse grain-size effect. Interestingly, no inverse grain-size effect exists on stacking fault formation. These observations are explained by generalized planar fault energies and grain-size effect on partial emissions.  相似文献   

2.
3.
周宗荣  王宇  夏源明 《物理学报》2007,56(3):1526-1531
运用分子动力学方法,对γ-TiAl金属间化合物的面缺陷能(层错能和孪晶能)进行了研究. 计算得到γ-TiAl不同滑移系(或孪生系)的整体堆垛层错能曲线,结果表明,γ-TiAl较一般fcc晶体结构的金属可动滑移系(孪生系)的数量减少,在外界条件下呈脆性. 研究孪生系(1/6)〈112〉{111}的弛豫的整体堆垛层错(GSF)能和整体孪晶(GTF)能曲线,对不稳定层错能γusf、稳定层错能γsf和不稳定孪晶能γusf值进行分析,可以预知, γ-TiAl的主要变形机理为孪生系(1/6)〈112〉{111}的孪生和普通滑移系(1/6)〈110〉{111}的滑移,以及超滑移系(1/2)〈011〉{111}的滑移. 关键词: γ-TiAl')" href="#">γ-TiAl 堆垛层错能 孪晶能 分子动力学  相似文献   

4.
Macroscopic strain was hitherto considered a necessary corollary of deformation twinning in coarse-grained metals. Recently, twinning has been found to be a preeminent deformation mechanism in nanocrystalline face-centered-cubic (fcc) metals with medium-to-high stacking fault energies. Here we report a surprising discovery that the vast majority of deformation twins in nanocrystalline Al, Ni, and Cu, contrary to popular belief, yield zero net macroscopic strain. We propose a new twinning mechanism, random activation of partials, to explain this unusual phenomenon. The random activation of partials mechanism appears to be the most plausible mechanism and may be unique to nanocrystalline fcc metals with implications for their deformation behavior and mechanical properties.  相似文献   

5.
梅继法  黎军顽  倪玉山  王华滔 《物理学报》2011,60(6):66104-066104
基于嵌入原子势考察体心立方(bcc)金属Ta的广义层错能和广义孪晶能并获得广义层错能和广义孪晶能曲线. 研究表明,bcc Ta的广义层错能曲线与面心立方金属的广义层错能曲线有明显差异,Ta的广义层错能曲线不存在明显的能量极小值,位错主要以全位错的形式发射. 不同原子厚度的广义孪晶能曲线表明4个原子层的孪晶能曲线开始出现亚稳定的能量极小值,5个原子层的孪晶能曲线出现稳定的能量极小值. 为进一步验证广义层错能和广义孪晶能曲线揭示的塑性变形机理,采用准连续介质力学多尺度方法研究Ⅱ型裂纹尖端的初始塑性变形过程. 关键词: 广义层错能 广义孪晶能 体心立方金属钽 Ⅱ型裂纹  相似文献   

6.
邵宇飞  王绍青 《物理学报》2010,59(10):7258-7265
通过准连续介质方法模拟了纳米多晶体Ni中裂纹的扩展过程.模拟结果显示:裂纹尖端的应力场可以导致晶界分解、层错和变形孪晶的形成等塑性形变,在距离裂纹尖端越远的位置,变形孪晶越少,在裂纹尖端附近相同距离处,层错要远多于变形孪晶.这反映了局部应力的变化以及广义平面层错能对变形孪晶的影响.计算了裂纹尖端附近区域原子级局部静水应力的分布.计算结果表明:裂纹前端晶界处容易产生细微空洞,这些空洞附近为张应力集中区,并可能促使裂纹沿着晶界扩展.模拟结果定性地反映了纳米多晶体Ni中的裂纹扩展过程,并与相关实验结果符合得很好  相似文献   

7.
8.
The stacking faults of crystal magnesium have been studied systematically by means of first-principles calculation within the generalized gradient approximation (GGA). The generalized stacking fault (GSF) energy surfaces for four kinds of basal stacking faults as well as other non-basal stacking faults in the prismatic and pyramidal planes have been gained using a supercell approach with the supercell tilling technique. The most likely slip directions for the formation of these stacking faults in the corresponding slip plane were determined, and the generalized stacking fault energy curves along the most likely slip directions were derived, then the stable and unstable stacking energies were obtained and discussed. The present results are helpful for further investigation of dislocations and the correlative mechanical properties.  相似文献   

9.
The mechanism of low-temperature deformation in a fracture process of L12 Ni3Al is studied by molecular dynamic simulations.Owing to the unstable stacking energy,the [01ˉ1] superdislocation is dissociated into partial dislocations separated by a stacking fault.The simulation results show that when the crack speed is larger than a critical speed,the Shockley partial dislocations will break forth from both the crack tip and the vicinity of the crack tip;subsequently the super intrinsic stacking faults are formed in adjacent {111} planes,meanwhile the super extrinsic stacking faults and twinning also occur.Our simulation results suggest that at low temperatures the ductile fracture in L12 Ni3Al is accompanied by twinning,which is produced by super-intrinsic stacking faults formed in adjacent {111} planes.  相似文献   

10.
The second nearest-neighbor modified embedded atom method (2NN-MEAM) is used to investigate the generalized stacking fault (GSF) energy surfaces of eight FCC metals Cu, Ag, Au, Ni, Pd, Pt, Al and Pb. An offset is observed in all the metals for the displacement δus of unstable stacking fault energy from the geometrically symmetric displacement point . The offset value is the greatest for Al and the smallest for Ag. By analyzing the stable stacking fault energy γsf and unstable stacking fault energy γusf, it can be predicted that stacking fault is more favorable in Cu, Ag, Au, and especially in Pd than the other metals, while it is most preferred to create partial dislocation for Ag and to create full dislocation for Al.  相似文献   

11.
The doping effects on the stacking fault energies(SFEs),including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault,were studied by first principles calculation of the/phase in the Ni-based superalloys.The formation energy results show that the main alloying elements in Ni-based superalloys,such as Re,Cr,Mo,Ta,and W,prefer to occupy the Al-site in Ni3 AI,Co shows a weak tendency to occupy the Ni-site,and Ru shows a weak tendency to occupy the Al-site.The SFE results show that Co and Ru could decrease the SFEs when added to fault planes,while other main elements increase SFEs.The double-packed superlattice intrinsic stacking fault energies are lower than superlattice extrinsic stacking fault energies when elements(except Co) occupy an Al-site.Furthermore,the SFEs show a symmetrical distribution with the location of the elements in the ternary model.A detailed electronic structure analysis of the Ru effects shows that SFEs correlated with not only the symmetry reduction of the charge accumulation but also the changes in structural energy.  相似文献   

12.
The tight-binding potential combined with a simulated annealing method is used to study the generalized stacking fault (GSF) structure and corresponding energy of gold. The potential is chosen to fit band structures and total energies from a set of first-principle calculations [Phys. Rev. B 54, 4519 (1996)]. It is found that the relaxed stacking fault energy (SFE) and unstable SFE are equal to 46 and 102 mJ/m2, respectively, and are in good agreement with first principles calculations and experiment. In addition, the structure properties of the relaxed GSF of metal Au are also presented. Received 13 December 2001 Published online 9 July 2002  相似文献   

13.
Variations of energy, stress, and magnetic moment of fcc Ni as a response to shear deformation and the associated ideal shear strength (τ(IS)), intrinsic (γ(SF)) and unstable (γ(US)) stacking fault energies have been studied in terms of first-principles calculations under both the alias and affine shear regimes within the {111} slip plane along the <112> and <110> directions. It is found that (i) the intrinsic stacking fault energy γ(SF) is nearly independent of the shear deformation regimes used, albeit a slightly smaller value is predicted by pure shear (with relaxation) compared to the one from simple shear (without relaxation); (ii) the minimum ideal shear strength τ(IS) is obtained by pure alias shear of {111}<112>; and (iii) the dissociation of the 1/2[110] dislocation into two partial Shockley dislocations (1/6[211] + 1/6[121]) is observed under pure alias shear of {111}<110>. Based on the quasiharmonic approach from first-principles phonon calculations, the predicted γ(SF) has been extended to finite temperatures. In particular, using a proposed quasistatic approach on the basis of the predicted volume versus temperature relation, the temperature dependence of τ(IS) is also obtained. Both the γ(SF) and the τ(IS) of fcc Ni decrease with increasing temperature. The computed ideal shear strengths as well as the intrinsic and unstable stacking fault energies are in favorable accord with experiments and other predictions in the literature.  相似文献   

14.
The decohesion energy and the energy of unstable stacking faults for all cracking planes and dislocation slip systems observed experimentally are calculated using the molecular dynamics method with N-particle atomic potentials. A dimensionless parameter characterizing the brittle behavior of the material is calculated for basis, prism, and pyramid faces in terms of the model elaborated by Kelly et al. and extended by Rice and Thompson. Cleavage in Ti3Al is due to low decohesion energy values, which facilitates cracking, and high energies of unstable stacking faults, which prevents the formation of a plastic zone and stress relaxation at its vertex.  相似文献   

15.
Especially with respect to high Mn and other austenitic TRansformation and/or TWinning Induced Plasticity (TRIP/TWIP) steels, it is a current trend to model the stacking fault energy of a stacking fault that is formed by plastic deformation with an equilibrium thermodynamic formalism as proposed by Olson and Cohen in 1976. In the present paper, this formalism is critically discussed and its ambiguity is stressed. Suggestions are made, how the stacking fault energy and its relation to the formation of hexagonal ?-martensite might be treated appropriately. It is further emphasized that a thermodynamic treatment of deformation-induced stacking fault phenomena always faces some ambiguity. However, an alternative thermodynamic approach to stacking faults, twinning and the formation of ?-martensite in austenitic steels might rationalize the specific stacking fault arrangements encountered during deformation of TRIP/TWIP alloys.  相似文献   

16.
A model is developed to investigate the two-dimensional interfacial misfit dislocation networks that follows the original Peierls-Nabarro idea. Structure and energies of heterophase interfaces are considered for the cubic lattice. To examine the energy contribution of misfit dislocations, where interactions between two dislocation arrays are concerned, a generalized stacking fault energy is proposed. Combined with first-principles calculations, we apply this model to a practical metal-ceramic example: the Ag/MgO(100) interface. An important correction to the adhesive energy is proposed in addition to its dislocation structure being confirmed.  相似文献   

17.
ABSTRACT

Ultra-fine grained copper with nanotwins is found to be both strong and ductile. It is expected that nanocrystalline metals with lamella grains will have strain hardening behaviour. The main unsolved issues on strain hardening behaviour of nanocrystalline metals include the effect of stacking fault energy, grain shape, temperature, strain rate, second phase particles, alloy elements, etc. Strain hardening makes strong nanocrystalline metals ductile. The stacking fault energy effects on the strain hardening behaviour are studied by molecular dynamics simulation to investigate the uniaxial tensile deformation of the layer-grained and equiaxed models for metallic materials at 300?K. The results show that the strain hardening is observed during the plastic deformation of the layer-grained models, while strain softening is found in the equiaxed models. The strain hardening index values of the layer-grained models decrease with the decrease of stacking fault energy, which is attributed to the distinct stacking fault width and dislocation density. Forest dislocations are observed in the layer-grained models due to the high dislocation density. The formation of sessile dislocations, such as Lomer–Cottrell dislocation locks and stair-rod dislocations, causes the strain hardening behaviour. The dislocation density in layer-grained models is higher than that in the equiaxed models. Grain morphology affects dislocation density by influencing the dislocation motion distance in grain interior.  相似文献   

18.
Structural mechanisms and features of brittle and quasi-brittle fracture of nanocrystalline materials are theoretically analyzed. The role of size effects and internal stresses caused by a nonequilibrium structure during brittle trans-and intercrystallite fracture is studied. The dependence of the nanocrystalline material durability on the working stress and grain size is calculated. The conditions for certain mechanisms of plastic deformation to be operative in nanocrystalline materials are analyzed. The influence of the grain-boundary and dislocation mechanisms of plastic deformation on the conditions of nanocrack formation is studied. The dependence of the fracture toughness of nanomaterials on structure parameters is calculated.  相似文献   

19.
Theoretical model is suggested that describes the effects of the cooperative nanograin boundary sliding and stress-driven nanograin boundary migration (CNGBSM) process on the lattice dislocation emission from an elliptically blunt nanocrack tip in deformed nanocrystalline materials. Within the model, CNGBSM deformation near the tip of growing nanocrack carries plastic flow, produces two dipoles of disclination defects and creates high local stresses in nanocrystalline materials. By using the complex variable method, the complex form expression of dislocation force is derived, and critical stress intensity factors for the first lattice dislocation emission are obtained under mode I and mode II loading conditions, respectively. The combined effects of the geometric features and strengths of CNGBSM deformation, nanocrack blunting and length on critical SIFs for dislocation emission depend upon nanograin size and material parameters in a typical situation where nanocrack blunting and growth processes are controlled by dislocation emission from nanocrack tips. It is theoretically shown that the cooperative CNGBSM deformation and nanocrack blunting have great influence on dislocation emission from blunt nanocrack tip.  相似文献   

20.
Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号