首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
It is known that weak interactions of two solitary waves in generalized nonlinear Schrödinger (NLS) equations exhibit fractal dependence on initial conditions, and the dynamics of these interactions is governed by a universal two-degree-of-freedom ODE system [Y. Zhu J. Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations, Phys. Rev. E 75 (2007) 036605]. In this paper, this ODE system is analyzed comprehensively. Using asymptotic methods along separatrix orbits, a simple second-order map is derived. This map does not have any free parameters after variable rescalings, and thus is universal for all weak interactions of solitary waves in generalized NLS equations. Comparison between this map’s predictions and direct simulations of the ODE system shows that the map can capture the fractal-scattering phenomenon of the ODE system very well both qualitatively and quantitatively.  相似文献   

2.
We introduce a new notion of linear stability for standing waves of the nonlinear Schrödinger equation (NLS) which requires not only that the spectrum of the linearization be real, but also that the generalized kernel be not degenerate and that the signature of all the positive eigenvalues be positive. We prove that excited states of the NLS are not linearly stable in this more restrictive sense. We then give a partial proof that this more restrictive notion of linear stability is a necessary condition to have orbital stability.  相似文献   

3.
Extensive numerical simulations were performed to investigate all stages of modulation instability development from the initial pulse of pico-second duration in photonic crystal fiber: quasi-solitons and dispersive waves formation, their interaction stage and the further propagation. Comparison between 4 different NLS-like systems was made: the classical NLS equation, NLS system plus higher dispersion terms, NLS plus higher dispersion and self-steepening and also fully generalized NLS equation with Raman scattering taken into account. For the latter case a mechanism of energy transfer from smaller quasi-solitons to the bigger ones is proposed to explain the dramatical increase of rogue waves appearance frequency in comparison to the systems when the Raman scattering is not taken into account.  相似文献   

4.
Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.  相似文献   

5.
We consider the question of persistence of breather solutions of the discrete NLS equation under time-periodic perturbations corresponding to small amplitude diffraction management. The question is formulated as a problem of continuation of tori in an infinite-dimensional Hamiltonian system with symmetries and we show that one-peak breathers of the discrete NLS with zero residual diffraction can be continued to periodic or quasiperiodic solutions of the discrete NLS with small residual diffraction and small amplitude diffraction management, provided that a nonresonance condition is satisfied. We also present numerical evidence that a similar continuation should be possible for certain single-, and multi-peak breathers of the discrete NLS with small diffraction.  相似文献   

6.
An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones.  相似文献   

7.
《Physics letters. A》2019,383(28):125898
Inspired by the recent realization of pure-quartic solitons (Blanco-Redondo et al. (2016) [1]), in the present work we study the localization of optical pulses in a similar system, i.e., a silicon photonic crystal air-suspended structure with a hexagonal lattice. The propagation of ultrashort pulses in such a system is well described by a generalized nonlinear Schrödinger (NLS) equation, which in certain conditions works with near-zero group-velocity dispersion and third order dispersion. In this case, the NLS equation has only the fourth order dispersion term. In the present model, we introduce a quasiperiodic linear coefficient that is responsible to induce the localization. The existence of Anderson localization has been confirmed by numerical simulations even when the system presents a small defocusing nonlinearity.  相似文献   

8.
荆建春  李彪 《中国物理 B》2013,22(1):10303-010303
In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrdinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.  相似文献   

9.
N-coupled nonlinear Schrödinger (NLS) equations have been proposed to describe N-pulse simultaneous propagation in optical fibers. When the fiber is nonuniform, N-coupled variable-coefficient NLS equations can arise. In this paper, a family of N-coupled integrable variable-coefficient NLS equations are studied by using a generalized version of the dressing method. We first extend the dressing method to the versions with (N + 1) × (N + 1) operators and (2N + 1) × (2N + 1) operators. Then, we obtain three types of N-coupled variable-coefficient equations (N-coupled NLS equations, N-coupled Hirota equations and N-coupled high-order NLS equations). Then, the compatibility conditions are given, which insure that these equations are integrable. Finally, the explicit solutions of the new integrable equations are obtained.  相似文献   

10.
We study the regimes of complex field dynamics upon modulation instability in distributed nonlinear resonators under external harmonic driving. Two regimes are considered: the regime of a nonlinear ring cavity, described by nonlinear Schrödinger equation (NLS) with a delayed boundary condition, and the regime of a one-dimensional Fabri-Perot cavity, described by a system of coupled NLS for the forward and backward waves. Theoretical stability analysis of stationary forced oscillations is carried out. The results of numerical simulation of transition to chaos with increasing input intensity are presented.  相似文献   

11.
In this paper, we investigate some exact soliton solutions for a generalized variable-coefficients nonlinear SchrSdinger equation (NLS) with an arbitrary time-dependent linear potential which describes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensations. Under some reasonable assumptions, one-soliton and two-soliton solutions are constructed analytically by the Hirota method. From our results, some previous one- and two- soliton solutions for some NLS-type equations can be recovered by some appropriate selection of the various parameters. Some figures are given to demonstrate some properties of the one- and the two-soliton and the discussion about the integrability property and the Hirota method is given finally.  相似文献   

12.
In this paper we show a systematical method to obtain exact solutions of the nonautonomous nonlinear Schrödinger (NLS) equation. An integrable condition is first obtained by the Painlevé analysis, which is shown to be consistent with that obtained by the Lax pair method. Under this condition, we present a general transformation, which can directly convert all allowed exact solutions of the standard NLS equation into the corresponding exact solutions of the nonautonomous NLS equation. The method is quite powerful since the standard NLS equation has been well studied in the past decades and its exact solutions are vast in the literature. The result provides an effective way to control the soliton dynamics. Finally, the fundamental bright and dark solitons are taken as examples to demonstrate its explicit applications.  相似文献   

13.
In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrödinger (NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtained by determinant expression form. In particular, we present rogue waves from first to third-order through some figures and analyze their dynamics.  相似文献   

14.
The generalized (1+1)-D(1+1)-D non-linear Schrödinger (NLS) theory with particular integrable boundary conditions is considered. More precisely, two distinct types of boundary conditions, known as soliton preserving (SP) and soliton non-preserving (SNP), are implemented into the classical glNglN NLS model. Based on this choice of boundaries the relevant conserved quantities are computed and the corresponding equations of motion are derived. A suitable quantum lattice version of the boundary generalized NLS model is also investigated. The first non-trivial local integral of motion is explicitly computed, and the spectrum and Bethe ansatz equations are derived for the soliton non-preserving boundary conditions.  相似文献   

15.
推广少体问题中的 AGS约化理论 ,证明量子动力学在不同层次具有相同形式 ,称为量子动力学的自相似.By a generalized version of AGS reduction procedure we show that the forms of quantum dynamics at different strata are the same. This is the self similarity of quantum dynamics.  相似文献   

16.
We present a statistical equilibrium model of self-organization in a class of focusing, nonintegrable nonlinear Schrodinger (NLS) equations. The theory predicts that the asymptotic-time behavior of the NLS system is characterized by the formation and persistence of a large-scale coherent solitary wave, which minimizes the Hamiltonian given the conserved particle number (L2-norm squared), coupled with small-scale random fluctuations, or radiation. The fluctuations account for the difference between the conserved value of the Hamiltonian and the Hamiltonian of the coherent state. The predictions of the statistical theory are tested against the results of direct numerical simulations of NLS, and excellent qualitative and quantitative agreement is demonstrated. In addition, a careful inspection of the numerical simulations reveals interesting features of the transitory dynamics leading up to the long-time statistical equilibrium state starting from a given initial condition. As time increases, the system investigates smaller and smaller scales, and it appears that at a given intermediate time after the coalescense of the soliton structures has ended, the system is nearly in statistical equilibrium over the modes that it has investigated up to that time.  相似文献   

17.
A new approach to obtaining the sum rules satisfied by the phenomenological coefficients appearing in the metric tensor of the generalized coordinate space of a many-particle system is considered and applied to the vibration-rotation motion of a nonlinear molecule. The approach is based on the requirement of physical covariance of the Cartesian and generalized coordinate configuration spaces of the system. A partial criterion of this physical covariance is the condition that the curvature tensor of configuration space remains covariant, and this condition gives several sum rules for the vibration-rotation parameters. These sum rules are particular cases of those known previously.  相似文献   

18.
Two non-isospectral generalized nonlinear Schrodinger (ONLS) equations, which are two important models of nonlinear excitations of matter waves in Bose-Einstein condensates, are studied. Two novel transformations are constructed such that these two GNLS equations are transformed to the well-known nonlinear Schr6dinger (NLS) equation, which is an isospectral equation. Therefore, once one solution of the NLS equation is provided, we can immediately obtain one solution for two ONLS equations by these transformations. Thus it is unnecessary to solve these two non-isospectral GNLS equations directly. Soliton solutions and periodic solutions are obtained for them by two transformations from the corresponding solutions of the NLS equation, which are generated by Darboux transformation.  相似文献   

19.
本文基于引入的特定辅助谱参数ζ,避开了从原谱参数λ出发由于双值函数的出现不得不引入Riemann面造成的复杂,不仅简明地再导出了Zakharov和Shabat关于NLS方程在边值非0时求解的反散射方法,而且进一步导出了暗的多孤子解的显式,Jost解的完备集合与系统的Hamilton理论。简单地解决了解的常数相引起的问题。最后,对含修正项的NLS方程在边值非0时建立有效的微扰理论所遇到的困难进行了讨论。  相似文献   

20.
讨论一维和二维非线性Schrdinger(NLS)方程的数值求解.基于扩散广义黎曼问题的数值流量,构造一种直接间断Galerkin方法(DDG)求解非线性Schrdinger方程.证明该方法L2稳定性,并说明DDG格式是一种守恒的数值格式.对一维NLS方程的计算表明,DDG格式能够模拟各种孤立子形态,而且可以保持长时间的高精度.二维NLS方程的数值结果显示该方法的高精度和捕捉大梯度的能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号