首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electro‐rheological (ER) effect of a composite material consisting of a nematic liquid crystal (LC) and gold nanoparticles covered with mesogenic groups is discussed. The gold nanoparticles are covered by alkyl chains and liquid‐crystalline compounds. The influences of the alkyl‐chain length and the coverage by the alkyl chain and the mesogenic group on the miscibility of the nanoparticles with the LC are investigated by polarizing optical microscopy (POM). The presence of the gold nanoparticles in the nematic LC (5CB) leads to an enhanced ER response compared to that observed for 5CB. The prominent ER effect observed in this study is supported by the two mechanisms proposed, that is, the homogeneous and heterogeneous mechanisms. This study demonstrates the potential of a hybrid system consisting of an LC and gold nanoparticles to improve the ER effect.  相似文献   

2.
Conventional electrorheological (ER) fluids consist of electrically polarizable particles dispersed in an inert insulating liquid. They are characterized by a development of a yield stress upon application of an external electric field. They resemble Bingham fluids with yield stress value depending on electric field. A viscosity increase in the presence of an electric field has been also found in homogeneous solutions of liquid crystalline polymers with no yield stress observed. In this study these two types of fluids and combined dispersions of the solid particles in the liquid crystalline matrix were investigated. A lyotropic liquid crystalline polymer—poly(n‐hexyl isocyanate) (PHIC)—dissolved in xylene was chosen as the active matrix. The dispersed solid phase was comprised of two kinds of polymers: pyrolyzed polyacrylonitryle (PAN) showing electron conductivity, and PAN doped with two salts (KSCN, NaSCN), resulting in ionic conductivity. The rheological measurements under an electric field were performed. The pristine xylene solution of PHIC was characterized first as well as the 15% m/m dispersions of PAN powders in silicone oil. Then the dispersions in the liquid crystalline matrix were investigated showing a strong ER effect whose magnitude was considerably enhanced in comparison to both ER active components measured separately. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The dc field rheological properties and frequency dependent dielectric properties of a set of electrorheological (ER) fluids composed of oxidized polyacrylonitrile or aluminosilicate materials dispersed in silicone oil were examined in this paper. Our experimental investigations show that there is a complicated relationship between the dielectric properties of dispersed particles and the ER effect. The dielectric loss of dispersed particles, which has not attracted much attention in previous work, was found to play a considerable role in ER response. The large dielectric loss tangent, experimentally around 0.10 at 1000 Hz, is found to be needed for a strong ER effect. A good ER solid material should first have large dielectric loss, and then the higher the dielectric constant, the stronger the ER effect. The large dielectric loss would facilitate the turning of dispersed particles, and the high dielectric constant would maintain the fibrillation structure stable and strong. Two processes, the particle turning process and the particle polarization process, are thought to be involved in ER activity. Our findings, in connection with the Wagner model, can better explain why the strongest ER effect occurs at particle conductivity of 10−7S/m; why the shear stress of some ER fluids decreases with frequency while with others the shear stress increases with frequency; and why trace water can enhance the ER effect considerably, which would help in understanding the mechanism of the ER effect. Too large a dielectric loss is thought to be unfavorable for the ER effect, and its suitable range is worth further study. The results also present a method of designing high performance ER fluids, which would significantly promote development of electrorheology and its application in industrial areas.  相似文献   

4.
Liquid crystalline materials display unique properties which can be exploited in organic light-emitting diodes. Characteristic features of liquid crystals are the anisotropy of electronic properties, a strong coupling to external fields as well as a tendency to form spontaneously homogeneous monodomain films. It is found that liquid crystalline materials can be used in light-emitting diodes to control the state of polarization of the emitted light, the magnitude of the onset field for emission as well as the quantum efficiency. Both low molar mass and polymeric liquid crystals have been introduced with great success in single as well as in multilayer devices. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Electrorheological (ER) fluids are composed of dielectric particles dispersed in an inert liquid of low electric permittivity. Upon the application of an electric field ER fluids rapidly solidify, or increase their viscosity. Characteristic increase of the viscosity of ER fluids is due to the formation of particle chains that bridge the electrodes. This process is greatly affected by polarization processes within the solid phase and at the surface of the grains. These phenomena are governed by dopants, functional groups, structure of the solid particles and the solid/liquid interface. To find relations between parameters of the ER effect and material properties of components of ER fluids, two main types of the materials were investigated: conjugated polymers [polyphenylene (PPP), pyrolyzed polyacrylonitrile (PAN) and polythiophene] and solid electrolytes based on polyacrylonitrile complexed with inorganic salts. It was found that the ER activity resulted from surface polarization processes due to the presence of polar species (PAN) or bulk polarization related to mobile ions (PPP). Polythiophene, despite the presence of a conjugated system of multiple bonds, showed only residual ER effect. Solid electrolyte‐based fluids exhibited relatively high activity originated from ionic polarization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Traditional approaches to the use of Raman spectroscopy as an aid to the determination of local order parameters in liquid crystalline materials have employed polarizations of the excitation source and/or the analyser which are orthogonal to the liquid crystalline director. The present paper describes a Raman study, which seeks to take advantage of the additional information available from examining the complete range of orientations of the director in relation to these polarization directions. A theory is developed which shows how it is possible to use this additional information to derive more reliable values of the P2 and P4 local order parameters in homogeneous and twisted nematic liquid crystal cells.  相似文献   

7.
The electrostatic manipulation of nanoparticles using nonuniform electric fields (dielectrophoresis) has proved a useful method of investigating the movement of charge around colloidal particles. While previous work has explained many of the ways in which particle behavior deviates from that predicted by classical Maxwell-Wagner interfacial polarization theory, there exists an additional, anomalous polarization mechanism observed in media of high conductivity, causing an unexpected observation of positive dielectrophoresis. Here this is suggested that this may be explained in terms of the polarization of the Stern layer.  相似文献   

8.
Molecular dynamics simulations have been employed to explore the response of crystalline Ar systems with and without a free surface to a gradual temperature rise. The surface-free crystalline bulk undergoes a homogeneous melting process at the limit of superheating, whereas the semicrystal terminating with a free plane surface melts with a heterogeneous mechanism at a temperature corresponding to the equilibrium melting point. Numerical findings suggest that the gradual disordering of the crystalline lattice as well as the homogeneous and heterogeneous melting processes are mediated by atoms with defective coordination. Their concentration in the regions close to the semicrystal surface at the equilibrium melting point is found to be approximately the same as in the surface-free bulk at the limit of superheating.  相似文献   

9.
The laser intensity modulation method (LIMM) was applied to the investigation of polarization distributions in sandwich cells of a side chain liquid crystalline polymer (LCP). The thermal poling procedure using a pulsating electric field was carried out for the nematic phase at 80°C. After cooling down the samples to room temperature TR (i.e. below the glass transition temperature, Tg) a rather perfect alignment of the side chains could be obtained. Our first LIMM investigations at TR show a nearly homogeneous polarization profile in the LCP layer.  相似文献   

10.
The dielectric and conductometric spectra of water-in-oil microemulsions below percolation in the frequency range from 1 MHz to 1.8 GHz have been analyzed on the basis of the electrical modulus formalism. In the frequency range investigated, this approach clearly evidences the presence of a particular polarization mechanism, resulting in a well-defined dielectric dispersion, located between that due to the orientational polarization of the bulk aqueous phase and that due to the ionic structure of the interface, usually occurring in heterogeneous systems. This polarization mechanism has been attributed to the "in-phase" correlation displacement of surfactant polar head groups surrounding each water droplet dispersed in the oil phase. This mechanism differs from the usual interfacial Maxwell-Wagner effect. The advantage of the electrical modulus formalism, in comparison with the analysis of the directly measured quantities, the permittivity epsilon'(omega), and the total electrical conductivity sigma(omega), are briefly discussed. Copyright 2001 Academic Press.  相似文献   

11.
Based on the synthesis and characterization of side-chain liquid crystal polysiloxanes containing p-methoxyl phenyl benzolate, the homogeneous electrorheological (ER) liquid and its smart damper were fabricated. The properties of the homogeneous ER liquid and its smart damper were tested. The results indicated that the homogeneous ER liquid with significant ER effect at room temperature is obtained by mixing the side-chain liquid crystal polysiloxanes containing p-methoxyl phenyl benzolate and silicone oil. Its shear stress reached 1550Pa at electrical field strength (E) of 2.2 kV/mm and shear rate of 300 s-1. The damping forces of the smart damper based on the homogeneous ER liquid enhanced if E and oscillation frequency increased. Consequently, an effective way for semi-active control using the smart damper based on the homogeneous ER liquid was put forward to reduce the seismic responses of the structures.  相似文献   

12.
Dielectric measurement on a polymer-dispersed liquid crystal (PDLC) has been carried out in the frequency range from 10 Hz to 1 MHz and over the temperature range from 100 to 330 K. The PDLC sample was prepared by thermally induced phase separation of a 50% mixture by weight of commercially available liquid crystal E7 with PMMA and was sandwiched between two indium tin oxide glass plates separated by 40 μm spacers to form a “window.” The dielectric spectrum at low temperature (220–250 K) shows two distinct relaxation processes. Which occur at about 5 K lower than those in pure E7 having Tg ≈ 209 K. From differential scanning calorimetry data, the nematic transition of LC droplets in the PDLC is at 258 K, about 6 K lower than that of pure E7. The Maxwell-Wagner effect has been observed in the low-frequency side as the temperature increases from 280 to 320 K. At room temperature, the loss peak associated with the Maxwell-Wagner effect shows an amplitude dependence with excitation level but no frequency shift. The effect of different concentrations of E7 in PDLC samples at a given temperature shows the 50% mixture has the “fastest” relaxation frequency in such a dispersed heterogeneous system. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
Liquid crystals are molecular materials that combine anisotropy with dynamic nature. Recently, the use of hydrogen bonding for the design of functional liquid crystalline materials has been shown to be a versatile approach toward the control of simple molecularly assembled structures and the induction of dynamic function. A variety of hydrogen‐bonded liquid crystals has been prepared by molecular self‐assembly processes via hydrogen bond formation. Rod‐like and disk‐like low‐molecular weight complexes and polymers with side‐chain, main‐chain, network, and guest‐host structures have been built by the complexation of complimentary and identical hydrogen‐bonded molecules. These materials consist of closed‐type hydrogen bondings. Another type of hydrogen‐bonded liquid crystals consists of open‐type hydrogen bonding. In this case, the introduction of hydrogen bonding moieties, such as hydroxyl groups, induces microphase segregation leading to liquid crystalline molecular order. Moreover, liquid crystalline physical gels have been prepared by the molecular aggregation of hydrogen‐bonded molecules in non‐hydrogen‐bonded liquid crystals. They show significant electrooptical properties. An anisotropic gel is a new type of anisotropic materials forming heterogeneous structures.  相似文献   

14.
There are two main kinds of electric polarizability of bacteria: surface charge dependent (SChD) and Maxwell-Wagner (MW) polarizability. The aim of this article is to distinguish SChD and MW components on the external bacteria surface. An electro-optic method (electric turbidity) was used to study the polarizability of E. coli fixed by formaldehyde at the frequency range 20kHz to 20MHz. According to the literature the SChD polarization disappears at such high frequencies and MW one gives the main contribution. However we found unexpected dependence on the outer medium electrolyte concentration, which cannot be explained by MW polarization. The results show that the polarizability decreases by ionic strength increasing in the same way as the double electric layer thickness does. Such behaviour is a characteristic for SChD polarizability, which allows us to conclude that this component has the main contribution on the external bacteria surface at the experimental frequencies mentioned.  相似文献   

15.
We report on a simple approach for efficient NMR proton hyperpolarization of propane using the parahydrogen‐induced polarization (PHIP) technique, which yielded ≈6.2 % proton polarization using ≈80 % parahydrogen, a record level achieved with any hyperpolarization technique for propane. Unlike in previously developed approaches designed for continuous‐flow operation, where reactants (propene and parahydrogen) are simultaneously loaded for homogeneous or heterogeneous pairwise addition of parahydrogen, here a batch‐mode method is applied: propene is first loaded into the catalyst‐containing solution, which is followed by homogeneous hydrogenation via parahydrogen bubbling delivered at ≈7.1 atm. The achieved nuclear spin polarization of this contrast agent potentially useful for pulmonary imaging is approximately two orders of magnitude greater than that achieved in the continuous‐flow homogeneous catalytic hydrogenation, and a factor of 3–10 more efficient compared to the typical results of heterogeneous continuous‐flow hydrogenations.  相似文献   

16.
Crystallization of polyterephthalates of bis(4-hydroxy-3-chlorophenyl)-2,2-propane synthesized by an acceptor–catalytic polyesterification has been investigated quantitatively. It was found that in a homogeneous medium (in solvents for the polymer) amorphous polymers are formed, while polycondensation in a heterogeneous system (in nonsolvents for the polymer) gives rise to crystalline polyarylates, their degree of crystallization being dependent on synthesis conditions. Secondary treatment of resulting polymers can result in their crystallization and amorphization. Along with molecular weight the physicomechanical properties are significantly affected by the preparation method.  相似文献   

17.
The phase behaviour ofl-α-phosphatidylcholine liposomes has been studied as a function of temperature, pH, ionic strength, etc., in the presence and absence of chlorpromazine by a polarization method using 1,6-diphenyl-1,3,5-hexatriene as a fluorescence probe. The gel crystalline to liquid crystalline (Tc), liquid crystalline to cubic (TII), and cubic to hexagonal (HII) transition temperatures in multilayer liposomes have been detected, and are found to be affected by chlorpromazine under different experimental conditions.  相似文献   

18.
Molecular dynamics simulations have been used to investigate the mechanisms governing the homogeneous melting of pure noble gases at the limit of superheating. For each chemical species considered, the heterogeneous melting point was estimated by monitoring the thermal behavior of crystalline systems containing a high-angle grain boundary. To determine the limit to superheating, calculations were instead carried out on a perfect crystalline bulk. The temperature was gradually increased to bring the systems within the metastable region above the equilibrium melting point. The static order parameter was employed to monitor the structural disordering during the slow temperature increase and to determine the temperature at which the crystalline lattice collapses to a liquid. Structural disorder was further characterized by studying the appearance of atoms with defective coordination. Their relative number and spatial correlation appeared to play a fundamental role in destabilizing the crystalline lattice bulk and triggering the homogeneous melting. The fraction of atoms with defective coordination and the total length of the stringlike clusters they form in the vicinity of the homogeneous melting point were found to be approximately the same for all of the chemical species considered. These findings have been compared with theoretical predictions.  相似文献   

19.
The electrorheological (ER) effect and the electro‐optical properties of a ′′side‐on′′ liquid crystalline polysiloxane (PS) are investigated. A large ER effect is observed and the response to the shear stress of neat PS in the nematic phase is shown to be affected by the shear rate. PS is also mixed with a low‐molar nematic liquid crystal (5CB) in order to improve the response behavior to the applied electric field. The rheological properties of such mixtures are highly dependent on the concentration of 5CB. The composites respond faster to the applied electric field and have improved electro‐optical properties. This study offers a new perspective on the development of liquid crystal materials for the ER effect.  相似文献   

20.
In this paper, one-dimensional polyaniline/titanate (PANI/TN) composite nanotubes were synthesized by in situ chemical oxidative polymerization directed by block copolymer. These novel nanocomposite particles were used as a dispersed phase in electrorheological (ER) fluids, and the ER properties were investigated under both steady and dynamic shear. It was found that the ER activity of PANI/TN fluids varied with the ratio of aniline to titanate, and the PANI/TN suspensions showed a higher ER effect than that made by sphere-like PANI/TiO2 nanoparticles. These observations were well interpreted by their dielectric spectra analysis; a larger dielectric loss enhancement and a faster rate of interfacial polarization were responsible for a higher ER activity of nanotubular PANI/TN-based fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号