首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The high-resolution infrared spectrum of the nu(8) band of SO(2)F(2) (nu(as) SF(2)) centered at 887.2 cm(-1) has been recorded with a resolution of 2.4 x 10(-3) cm(-1). More than 8000 transitions of the C-type band with DeltaK(a) = +/-1 (and in addition some DeltaK(a) = +/-3 transitions) have been assigned. Microwave and millimeter-wave spectra of the v(8) = 1 state up to 450 GHz have been recorded, and 177 pure rotational transitions have been measured. Rotational and rovibrational data have been combined, and excited state parameters up to sextic centrifugal distortion constants have been determined using a Watson-type Hamiltonian in S-reduction. No perturbation was indicated. Copyright 2000 Academic Press.  相似文献   

2.
The submillimeter-wave rotational transitions of HOC(+) in the nu(2) excited state are first detected using the double-modulation method, and the precise transition frequencies and the much improved molecular constants are obtained. The measurements of the ground state HOC(+) and DOC(+) submillimeter-wave lines are extended up to the 840-GHz region. It is found that the higher order centrifugal distortion constant, H, is necessary to fit the observed transition frequencies to the experimental accuracy. Copyright 2000 Academic Press.  相似文献   

3.
The vibrational excitations of bent triatomic molecules, including both bending and stretching vibrations, are studied in the framework of the U(4) algebra. For the bent triatomic molecules H(2)O and H(2)S, the highly excited vibrational levels (up to 14) are obtained using the U(4) algebraic approach. We have found that the spectra are made up of clustering structure. The number of levels in one cluster depends on the total quanta of stretching and bending. In addition, some other properties are also discussed. Copyright 2000 Academic Press.  相似文献   

4.
High-resolution (Deltavarsigma = 2.3 and 2.9 x 10(-3) cm(-1)) FTIR spectra of natural and (35)Cl monoisotopic CH(3)CF(2)Cl have been recorded at -70 degrees C in the 600-1400 cm(-1) range. The bands nu(7), nu(8), and nu(15) have been rotationally analyzed for both isotopic varieties. With the help of predictions based on nu(8) parameters, the millimeter-wave spectrum of the (35)Cl species in the v(8) = 1 state has been observed and jointly fitted with the IR data. Only a small number of local perturbations have been detected in the spectra. Altogether more than 8000 IR transitions have been fitted with an experimental precision of ca. 3 x 10(-4) cm(-1). Copyright 2000 Academic Press.  相似文献   

5.
High-resolution FTIR spectra of 1,1,1-trifluoroethane (HFC-143a) have been recorded in the region from 1370 to 1470 cm(-1) with an unapodized resolution of 0.0016 cm(-1) at room temperature and of 0.004 cm(-1) at 183 and 100 K. The two main infrared active bands of A(1) symmetry have been shown to be nu(2) at 1407.5 cm(-1) and nu(4) + nu(5) at 1440.5 cm(-1). With the aid of Raman spectra, the two infrared inactive bands of E symmetry in this spectra region have been shown to be nu(8) at 1457.5 cm(-1) and nu(6) + nu(9) at 1446.2 cm(-1). The nu(2) band was analyzed as an isolated band, whereas the nu(4) + nu(5) band was analyzed as part of the triad nu(4) + nu(5), nu(6) + nu(9), and nu(8). Copyright 2000 Academic Press.  相似文献   

6.
The spectrum of the nu(10) band of diborane, arising from the ring-puckering vibration, has been obtained with a spectral resolution of 0.0015 cm(-1) in the region 275-400 cm(-1). The spectrum of a sample enriched in (10)B was recorded as well as one with naturally abundant boron, i.e., 64% (11)B(2)H(6), 32% (10)B(11)BH(6), and 4% (10)B(2)H(6). This mode is the lowest vibrational level of the molecule and is unperturbed, allowing a complete assignment of not only the fundamental bands but also the 2nu(10)-nu(10) hot bands of all three boron isotopomers. The intensities of several hundred lines of the fundamental and hot bands of all isotopomers have been measured and vibrational transition moments have been obtained. Finally, it has been shown that the harmonic approximation does not apply for nu(10). Copyright 2000 Academic Press.  相似文献   

7.
High-resolution, infrared absorption spectra of the nu6 (asymmetric C-H stretch) and 2nu2 (H-C-H symmetric bend overtone) bands of jet-cooled CH2F2 are reported with a sub-Doppler resolution of approximately 0.002 cm-1. More than 600 transitions were observed in the range of 3002-3036 cm-1, of which 268 were assigned the nu6 fundamental and 184 were assigned to the 2nu2 overtone. A fit of the nu6 band to the A-reduced Watson Hamiltonian yielded eight effective constants including nu0 = 3014.0503(1), A' = 1.62868(4), B' = 0.354165(5), and C' = 0.308852(3) cm-1. Similarly, the weaker 2nu2 band was fit to seven parameters including nu0 = 3026.2297(2), and A' = 1.63396(6), B' = 0.35367(1), and C' = 0.31183(1) cm-1. Numbers in parentheses are two standard deviations in units of the last digit. Anomalous values of the A rotational constant and the DeltaK centrifugal distortion constant are attributed to an a-axis Coriolis interaction between the 2nu2 and nu6 bands. The relative intensity of the 2nu2 band is used to estimate the stretch-bend anharmonic interaction with nu1. Copyright 1999 Academic Press.  相似文献   

8.
High-resolution Raman spectra of the nu(2) band of SF(6) have been recorded at a temperature of 195 K (dry ice) and a pressure of 39 mbar. These spectra were analyzed using a new set of programs specially written for XY(6) molecules. These programs, called HTDS (highly spherical top data system) in reference to the set of programs called STDS (spherical top data system written for XY(4) molecules) can be freely accessible through ftp (user anonymous) at jupiter.u-bourgogne.fr or on the web at the URL http://www.u-bourgogne.fr/LPUB/shTDS.html. The study of nu(2) was made using a Hamiltonian developed through the third order. Four parameters were determined. The standard deviation obtained using about 559 data up to J < 61 is 0.0021 cm(-1). This result is used to refine by simultaneous analysis the nu(2) and nu(2) + nu(6) bands of SF(6). This new fit allows the determination for the first time of some nu(6) parameters. The values obtained for this band (forbidden in Raman and in infrared) will be used to study the infrared hot bands in the nu(3) and nu(4) regions. Copyright 2000 Academic Press.  相似文献   

9.
The infrared spectrum in the range 900-1230 cm(-1) including the fundamental bands nu(3) and nu(6) of CD(3)CN has been studied. The resolution attained was 0.0025 cm(-1) in the measurement on the Bruker 120 HR Fourier spectrometer in Oulu. About 4000 lines were assigned in the nu(6) band. For the weak nu(3) band, which has not been observed earlier directly, we were able to assign 206 lines in three subbands K=8-10. These lines become detectable due to the strong nu(3)/nu(6) Coriolis resonance. There is also an l(1,-2) resonance between nu(3) and nu(6), which made it possible to obtain a value 2.647721(50) cm(-1) for the axial rotational constant A(0), when D(0)(K) from force field calculations was applied. Different types of resonances with the overtone 3nu(8) and the combinations nu(4)+nu(8) and nu(7)+nu(8) were observed. A fit with a standard deviation of 0.0019 cm(-1) was attained by using a model of 10 different resonances. Copyright 2001 Academic Press.  相似文献   

10.
The pure rotational spectrum of the astrophysically very important linear molecule cyanoacetylene, HC(3)N, in the ground and vibrationally excited states has been studied in selected regions from 118 to 814 GHz using the Cologne terahertz spectrometer. Vibrational satellites appendant to the following vibrational states have been recorded and analyzed (v(4), v(5), v(6), v(7)): (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), and the Fermi resonance systems (0, 1, 0, 0)/(0, 0, 0, 3) and (1, 0, 0, 2)/(0, 2, 0, 0)(0e). With the exception of the latter resonance system, all states have been fitted within experimental accuracy. This work provides improved rest frequencies for the astronomical community and may also be beneficial in the improvement of global fits. Copyright 2000 Academic Press.  相似文献   

11.
The first high-resolution study on germanium tetrafluoride is reported. We used a monoisotopic sample of (70)GeF(4). The FTIR spectra of the two infrared active fundamentals, namely the nu(4) (bending) and nu(3) (stretching) modes, were recorded at a temperature of ca. 210 K and a resolution (1/maximum optical path difference) of 0.0031 and 0.0023 cm(-1), respectively. These spectra were analyzed using the STDS software developed in Dijon. In both cases, we obtained a fit with a root mean square better than 1x10(-3) cm(-1). Both bands show very regular structures with no detectable perturbation. Copyright 2001 Academic Press.  相似文献   

12.
Spectra of (10)B monoisotopic diborane, B(2)H(6), have been recorded at high resolution (2-3 x 10(-3) cm(-1)) by means of Fourier transform spectroscopy in the region 700-1300 cm(-1). A thorough analysis of the nu(18) a-type, nu(14) c-type, and nu(5) symmetry-forbidden band has been performed. Of particular interest are the results concerning the nu(5) symmetry-forbidden band, which is observed only because it borrows intensity through an a-type Coriolis interaction with the very strong nu(18) infrared band located approximately 350 cm(-1) higher in wavenumber. The nu(5) band has been observed around 833 cm(-1) and consists of a well-resolved Q branch accompanied by weaker P- and R-branch lines. Very anomalous line intensities are seen, with the low K(a) transitions being vanishingly weak, and Raman-like selection rules observed. The determination of the upper state Hamiltonian constants proved to be difficult since the corresponding energy levels of each of the bands are strongly perturbed by nearby dark states. To account for these strong localized resonances, it was necessary to introduce the relevant interacting terms in the Hamiltonian. As a result the upper state energy levels were calculated satisfactorily, and precise vibrational energies and rotational and coupling constants were determined. In particular the following band centers were derived: nu(0) (nu(5)) = 832.8496(70) cm(-1), nu(0) (nu(14)) = 977.57843(70) cm(-1), and nu(0) (nu(18)) = 1178.6346(40) cm(-1). (Type A standard uncertainties (1varsigma) are given in parentheses.) Copyright 2000 Academic Press.  相似文献   

13.
The 3nu(1) and 3nu(1) + nu(3) bands of propyne have been recorded at Doppler-limited resolution by Fourier transform spectroscopy and intracavity laser absorption spectroscopy, respectively. The two bands show a mostly unperturbed J rotational structure for each individual K subband. However, as a rule the K structure ordering is perturbed in overtone transitions of propyne and different effective parameters associated with each K subband have been determined. From the vibrational energy levels, a value of -6.6 cm(-1) has been obtained for the x(13) cross anharmonicity in perfect agreement with the origins of the nu(1) + nu(3) and 2nu(1) + nu(3) combination bands estimated from the FTIR spectrum. Hot bands from the v(9) = 1 and v(10) = 1 levels associated with the 3nu(1) + nu(3) combination band have been partly rotationally analyzed and the retrieved values of x(39) and x(3,10) are in good agreement with literature values. Finally, the 4nu(1) + nu(9) - nu(9) band centered at 12 636.6 cm(-1) has been recorded by ICLAS. The red shift of this hot band relative to 4nu(1) and the DeltaB(v) value are discussed in relation to the anharmonic interaction between the 4nu(1) and 3nu(1) + nu(3) + nu(5) levels. Copyright 2000 Academic Press.  相似文献   

14.
The nu(3), nu(5), and nu(6) fundamental bands of the (13)CH(3)D molecule have been studied with Fourier transform infrared spectroscopy. The spectra and results for the parent species (12)CH(3)D (O. N. Ulenikov, G. A. Onopenko, N. E. Tyabaeva, J. Schroderus, and S. Alanko, J. Mol. Spectrosc. 193, 249-259 (1999)) have been used to assign and analyze about 1900 lines belonging to the (13)CH(3)D isotopic species. About 850 ground state combination differences with DeltaK = 0 were calculated, which allowed us to determine the J-dependent ground state rotational constants. The K-dependent constants as well as those describing the a(1)-a(2) (K = 3) splitting were fixed to the values obtained for the (12)CH(3)D species. The (v(3) = 1), (v(5) = 1), and (v(6) = 1) states were fit simultaneously by including the intervibrational interactions in the Hamiltonian. The rotational energies, the rotational and centrifugal distortion constants, as well as the resonance parameters involving the three states have been determined and discussed. Copyright 2000 Academic Press.  相似文献   

15.
The nu(2) (nu(eff.) 854.841 cm(-1)) and 2nu(3) infrared bands (nu(eff.) 840.083 cm(-1)) of DSiF(3) have been studied with a resolution of 2.5 x 10(-3) cm(-1). Moreover, millimeter-wave transitions in the v(2) = 1 and v(3) = 2 states up to J" = 33 have been measured. The assignments and fit of the poorly resolved, compressed cluster-type 2nu(3) IR transitions have been confirmed by a simultaneous study of the 2nu(3)-nu(3) band. The constant W = 5.116 cm(-1) of the Fermi interaction between the v(2) = 1 and v(3) = 2 levels has been determined from frequency effects which are in agreement with relative intensities of the nu(2) and 2nu(3) bands. The deperturbed (B(0) - B(v)) and (C(0) - C(v)) values of the states involved agree with their ab initio predictions within 7% in the worst case. Copyright 2001 Academic Press.  相似文献   

16.
Using new high-resolution Fourier transform spectra recorded at the University of Denver in the 2-μm region, a new and more extended analysis of the 2nu(1) + nu(3) and 3nu(3) bands of nitrogen dioxide, located at 4179.9374 and 4754.2039 cm(-1), respectively, has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model that takes into account both the Coriolis interactions between the spin-rotation energy levels of the (201) vibrational "bright" state with those of the (220) "dark" state. The interactions between the (003) bright state with the (022) dark state were similarly treated. The spin-rotation resonances within each of the NO(2) vibrational states were also taken into account. The precise vibrational energies and the rotational, spin-rotational, and coupling constants were obtained for the two dyads {(220), (201)} and {(022), (003)} of the (14)N(16)O(2) interacting states. From the experimental line intensities of the 2nu(1) + nu(3) and 3nu(3) bands, a determination of their vibrational transition moment constants was performed. A comprehensive list of line positions and line intensities of the {2nu(1) + 2nu(2), 2nu(1) + nu(3)} and the {2nu(2) + 2nu(3), 3nu(3)} interacting bands of (14)N(16)O(2) was generated. In addition, assuming the harmonic approximation and using the Hamiltonian constants derived in this work and in previous studies (A. Perrin, J.-M. Flaud, A. Goldman, C. Camy-Peyret, W. J. Lafferty, Ph. Arcas, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 60, 839-850 (1998)), we have generated synthetic spectra for the {(022), (003)}-{(040), (021), (002)} hot bands at 6.3 μm and for the {(220), (201)}-{(100), (020), (001)} hot bands at 3.5 μm, which are in good agreement with the observed spectra. Copyright 2000 Academic Press.  相似文献   

17.
A spectrum of HSiF(3) has been recorded at room temperature with a gas pressure of 20-50 Torr in the near-infrared region. A laser photoacoustic spectrometer consisting of a longitudinal resonant cell coupled to a titanium:sapphire ring laser was employed. The 5nu(1) and 6nu(1) overtone bands of H(28)SiF(3) associated with the Si-H stretching have been observed at high resolution (3 x 10(-2) cm(-1)) in the regions 10 900-10 960 and 12 875-12 925 cm(-1), respectively. About 450 lines of the 5nu(1)-0 band have been assigned (J 相似文献   

18.
Results of a high-resolution infrared study of the spectroscopy of monodeuterated methyl fluoride, CH(2)DF, are reported for the first time. Spectra ranging from 500 to 3300 cm(-1) have been obtained and cover all the fundamental bands at resolutions down to 0.005 cm(-1). The two lowest energy fundamentals, the nu(5) and nu(6) bands, have been analyzed in detail. Since the molecule has C(s) symmetry, in principle both these bands are AB hybrids, since they belong to the irreducible representation A'. However, it was found that both are almost pure A-type bands. A total of 597 A-type lines of the nu(5) band and 619 A-type lines of the nu(6) band have been assigned. Vibrational and rotational spectroscopic constants have been determined by least-squares fitting to the data. An improved band center for nu(7) is also reported. Copyright 2001 Academic Press.  相似文献   

19.
The gas-phase infrared spectrum of the nu(4) fundamental band of CH(2)(79)BrF was recorded in the 1010-1116 cm(-1) wavenumber region using a TDL spectrometer. In this first high-resolution investigation of the synthesized (79)Br isotopic form, more than 10 200 transitions of this a/b-hybrid band centered at 1068.5385 cm(-1) were assigned and, using the Watson's A-reduced Hamiltonian in the I(r)-representation, a reliable set of molecular constants for the excited state v(4) = 1 was determined. From ground state combination differences having rotational quantum numbers J and K(a) up to 97 and 21, respectively, improved and extended ground state rotational and centrifugal distortion constants were calculated as well. Comparison between the observed and calculated band intensities in appropriate regions of the spectrum gave an estimate of the transition dipole-moment ratio along the a and b axes as ||Deltaμ(a)/Deltaμ(b) || = 2.0 +/- 0.2, in agreement with the predicted theoretical value of 1.99. Copyright 2000 Academic Press.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号