首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Covalent modification of human IgG by fatty acid esters (C8 and C16) of N-hydroxysuccinimide was carried out. Surface hydrophobicity measurements, using the fluorescent probe 8-anilino-1-naphthalenesulfonate, indicate an increase in the surface protein hydrophobicity with an increase in the number and in the length of the attached alkyl chains. The modified IgGs decrease surface tension at the air/solution interface more effectively than the native protein. The values of the molecular cross-sectional areas (DeltaA) estimated from the kinetic data are in the range of 100-300 ?2 and reflect the size of protein segments at the interface during the adsorption process. About 40-50% increase in the DeltaA was observed upon attachment of the C8 groups to the native IgG. The lengthening of the bound alkyl chain from C8 to C16 results in a further increase in this value. The influence of the overall IgG hydrophobicity and the length of the attached alkyl chain on the dimensions of the mobile protein segment at the surface are discussed. Copyright 1999 Academic Press.  相似文献   

2.
Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes of beta-lactoglobulin (positively charged at pH 4.5) and low methoxyl pectin (negatively charged) were formed at two mixing ratios, resulting in negatively charged and nearly neutral complexes. Neutron reflection showed that adsorption of negative complexes leads to more diffuse layers at the air/water interface than adsorption of neutral complexes. Besides (simultaneous) adsorption of protein/polysaccharide complexes, a mixed layer can also be formed by adsorption of (protein/)polysaccharide (complexes) to a pre-formed protein layer (sequential adsorption). Despite similar bulk concentrations, adsorbed layer density profiles of simultaneously and sequentially formed layers were persistently different, as illustrated by neutron reflection analysis. Time resolved fluorescence anisotropy showed that the mobility of protein molecules at an air/water interface is hampered by the presence of pectin. This hampered mobility of protein through a complex layer could account for differences observed in density profiles of simultaneously and sequentially formed layers. These insights substantiated the previously proposed organisations of the different adsorbed layers based on surface rheological data.  相似文献   

3.
External reflection FTIR spectroscopy and surface pressure measurements were used to compare conformational changes in the adsorbed structures of three globular proteins at the air/water interface. Of the three proteins studied, lysozyme, bovine serum albumin and beta-lactoglobulin, lysozyme was unique in its behaviour. Lysozyme adsorption was slow, taking approximately 2.5 h to reach a surface pressure plateau (from a 0.07 mM solution), and led to significant structural change. The FTIR spectra revealed that lysozyme formed a highly networked adsorbed layer of unfolded protein with high antiparallel beta-sheet content and that these changes occurred rapidly (within 10 min). This non-native secondary structure is analogous to that of a 3D heat-set protein gel, suggesting that the adsorbed protein formed a highly networked interfacial layer. Albumin and beta-lactoglobulin adsorbed rapidly (reaching a plateau within 10 min) and with little change to their native secondary structure.  相似文献   

4.
Structure of Protein Layers during Competitive Adsorption   总被引:1,自引:0,他引:1  
The formation of protein layers during competitive adsorption was studied with ellipsometry. Single, binary, and ternary protein solutions of human serum albumin (HSA), IgG, and fibrinogen (Fgn) were investigated at concentrations corresponding to blood plasma diluted 1/100. As a model surface, hydrophobic hexamethyldisiloxane (HMDSO) plasma polymer modified silica was used. By using multiambient media measurements of the bare substrate prior to protein adsorption the adsorbed amount as well as the thickness and refractive index of the adsorbed protein layer could be followedin situand in real time. Under conditions used in these experiments neither IgG nor fibrinogen could fully displace serum albumin from the interface. The buildup of the protein layer occurred via different mechanisms for the different protein systems. Fgn adsorbed in a rather flat orientation at low adsorbed amounts, while at higher surface coverage the protein reoriented to a more upright orientation in order to accommodate more molecules in the adsorbed layer. IgG adsorption proceeded mainly end-on with little reorientation or conformational change on adsorption. Finally, for HSA an adsorbed layer thickness greater than the molecular dimensions was observed at high concentrations (although not at low), indicating that aggregates or multilayers formed on HMDSO plasma polymer surfaces. For all protein mixtures the adsorbed layer structure and buildup indicated that Fgn was the protein dominating the adsorbed layer, although HSA partially blocked the adsorption of this protein. At high surface concentration, HSA/Fgn mixtures show an abrupt change in both adsorbed layer thickness and refractive index suggesting, e.g., an interfacial phase transition of the mixed protein layer. A similar but less pronounced behavior was observed for HSA/IgG. For IgG/Fgn and HSA/IgG/Fgn a buildup of the adsorbed layer similar to that displayed by Fgn alone was observed.  相似文献   

5.
不对称Gemini表面活性剂在气/液界面的吸附动力学   总被引:3,自引:0,他引:3  
合成出由1个亚甲基联接羟基和季铵基头基, 且带两根不同长度烷烃链的不对称Gemini表面活性剂CmH2m+1OCH2CH(OH)CH2N+(CH3)2C8H17Br(记为CmOhpNC8, m=10, 12, 14). 用最大泡压法研究了浓度低于临界胶团浓度时, CmOhpNC8在气/液界面上的吸附动力学. 结果表明, CmOhpNC8表现出很明显的吸附动力学效应. CmOhpNC8向新鲜气/液界面吸附时由扩散过程控制; 当界面上已具有一定吸附量时, 显示出吸附能垒Ea. 随着烷烃链的增长而明显降低, 表明长烷烃链的分子到达亚层后更容易插入表面层,这被归结为分子烷烃链间的疏水相互作用随着链增长而增强所致.  相似文献   

6.
Fibrinogen (FB) and other serum proteins leak into the aqueous alveolar lining layer due to lung injuries. The adsorption of these serum proteins at the air/aqueous interface can produce higher surface tensions than the pulmonary lipids, and acute respiratory distress syndrome (ARDS) can ensue. By having a molecular adsorption mechanism, as compared to a particulate adsorption mechanism of other longer chain lipids, dilauroylphosphatidylcholine (DLPC) lipid can expel FB from the air/aqueous interface at 25 degrees C, in water or in phosphate-buffered saline, as proven by tensiometry (also at 37 degrees C), ellipsometry, and infrared reflection-absorption spectroscopy. Moreover, before FB is displaced by DLPC at the interface, there is a substantial initial enhancement in the FB adsorption, consistent with some interaction or binding of DLPC with FB to produce a more hydrophobic protein surface. After the FB molecules have been displaced by DLPC, or when DLPC has already adsorbed at the interface, FB molecules are less favored to adsorb near the DLPC monolayer with the lecithin headgroups facing toward them. The results have implications for possible uses of DLPC lipid in potential lung surfactant formulations in treating patients with ARDS.  相似文献   

7.
We have determined the structural conformations of human lactoferrin adsorbed at the air/water interface by neutron reflectivity (NR) and its solution structure by small angle neutron scattering (SANS). The neutron reflectivity measurements revealed a strong structural unfolding of the molecule when adsorbed at the interface from a pH 7 phosphate buffer solution (PBS with a total ionic strength at 4.5 mM) over a wide concentration range. Two distinct regions, a top dense layer of 15-20 angstroms on the air side and a bottom diffuse layer of some 50 angstroms into the aqueous subphase, characterized the unfolded interfacial layer. At a concentration around 1 g dm(-3), close to the physiological concentration of lactoferrin in biological fluids, the adsorbed amount was 5.5 x 10(-8) mol m(-2) in the absence of NaCl, but the addition of 0.3 M NaCl reduced protein adsorption to 3.5 x 10(-8) mol m(-2). Although the polypeptide distributions at the interface remained similar, quantitative analysis showed that the addition of NaCl reduced the layer thickness. Parallel measurements of lactoferrin adsorption in D2O instead of null reflecting water confirmed the unfolded structure at the interface. Furthermore, the D2O data indicated that the polypeptide in the top layer was predominantly protruded out of water, consistent with it being hydrophobic. In contrast, the scattering intensity profiles from SANS were well described by a cylindrical model with a diameter of 47 angstroms and a length of 105 angstroms in the presence of 0.3 M NaCl, indicating a retention of the globular framework in the bulk solution. In the absence of NaCl but with the same amount of phosphate buffer, the length of the cylinder increased to some 190 angstroms and the diameter remained constant. The length increase is indicative of changes in distance and orientation between the bilobal monomers due to the change in charge interactions. The results thus demonstrate that the surface structural unfolding was caused by the exposure of the protein molecule to the unsymmetrical energetic balance following surface adsorption.  相似文献   

8.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

9.
To obtain information on the interactions between CETP and HDL3 lipoproteins, we have studied (by surface tension measurements) the adsorption of the CETP at the air–water interface and at the interface between the water and monolayers formed by spreading of lipids extracted from HDL3. We have compared the interfacial behavior of CETP and ApoA-1 (the constitutive protein of HDL3); and the influence of monolayers composition and pressure on the kinetics of the CETP adsorption. The results obtained show that CETP was more expanded than the ApoA-1 which adsorbed more strongly at the air–water interface. CETP adsorbs more and quickly at the lipid interface that at the air–interface, specially for 20% fraction of cholesterol in the monolayer. Our results show that the adsorption of the CETP at the HDL3 surface lipids are strongly dependent of the composition of the monolayer and that the exclusion pressure of CETP varied from 31 to 33.7 mN m−1 with the addition of cholesterol. Finally, the kinetics of the adsorption at water–lipid interface exhibited two steps (quick increase followed by slow decrease of the excess surface pressure) which should indicate a penetration into monolayer followed by a partial desorption of phospholipids with or without cholesterol corresponding to a proteolipid association.  相似文献   

10.
Protein adsorption on poly(ethylene oxide) (PEO) and oligo(ethylene oxide) (OEO) monolayers is studied at different packing densities using the Langmuir technique. In the case of a PEO monolayer, a protein adsorption minimum is revealed at sigma(-1) = 10 nm(2) for both lysozyme and fibrinogen. Manifested are two packing density regimes of steric repulsion and compressive attraction between PEO and a protein on top of the overall attraction of the protein to the air/water interface. The observed protein adsorption minimum coincides with the maximum of the surface segment density at sigma(-1) = 10 nm(2). However, OEO monolayer presents a different scenario, namely that the amount of protein adsorbed decreases monotonically with increasing packing density, indicating that the OEO chains merely act as a steric barrier to protein adsorption onto the air/water interface. Besides, in the adsorption of fibrinogen, three distinct kinetic regimes controlled by diffusion, penetration and rearrangement are recognized, whereas only the latter two were made out in the adsorption of lysozyme.  相似文献   

11.
The adsorption of six symmetrical cationic (dimethylammonium bromide) gemini surfactants with four different partially fluorinated chains at three different surfaces--the air/water, the hydrophilic silica/water, and the hydrophobic (octadecyltricholorosilane (OTS))/water--has been investigated by neutron reflectometry. The corresponding single chain trimethylammonium bromides have also been studied at the two solid surfaces. Four of the geminis with a C(6) spacer and chains with differing amounts of fluorocarbon have identical limiting areas per molecule at the air/water interface (106 ± 5 ?(2)). This is similar to the value for the corresponding hydrocarbon gemini with a C(6) spacer and C(12) side chains, but unlike the hydrocarbon gemini, it is significantly more than twice the area per molecule of the corresponding single chain cationic. In adsorbed aggregates on hydrophilic silica the area per molecule decreases from the air/water value by an average of about 25%, indicating a substantial improvement in the packing of these geminis in the aggregate, which can be attributed to the stronger interaction between the hydrophobic chains in the interior of the aggregates. On the hydrophobic OTS surface the area per molecule in the adsorbed monolayer for three partially fluorinated geminis decreased by about 15% from the air/water value, again indicating much more favorable packing next to the hydrophobic OTS, but for one of the geminis, fC(8)C(6)-C(6)-C(6)fC(8), the change in area was reversed. This reversal is accompanied by a marked thinning of the layer, which is attributed to a shift in the balance between the interactions of the hydrocarbon spacer and fluorocarbon chain fragments and the OTS surface.  相似文献   

12.
The effects of a control blocking of free cystein by N-ethylmaleimide on the interfacial behavior (kinetics of adsorption at the air/water interface, rheology of the interfacial layer) as well as on the foaming properties (density, stability) of beta-lactoglobulin were investigated. Compared to native beta-lactoglobulin (unmodified beta-lactoglobulin), sulfydryl-modified beta-lactoglobulin exhibited higher surface hydrophobicity, adsorbed faster at the air/water interface, had the capability to develop rapidly an interfacial layer with high shear elastic constant but exhibited a considerably lower shear elastic constant plateau value. Moreover, sulfydryl-modified beta-lactoglobulin exhibited better foaming properties especially regarding the short-term foam stability suggesting that the initial rheology of the interfacial film is at least as much important for the general mechanism of foam stabilization as the potential viscoelasticity the interfacial film could reach on aging.  相似文献   

13.
Poly(N-isopropylacrylamide) oligomer was immobilized onto a silica gel surface. The gel adsorbed a hydrophobic protein γ-globulin (IgG) at 37°C, however, did not adsorb IgG at 24°C. The adsorbed IgG at 37°C was adsorbed by lowering the temperatue, No adsorption of a hydrophilic protein bovin serum albumin (BSA) onto this matrix was observed at 37°C nor 24°C.  相似文献   

14.
In this paper two in situ techniques are combined to simultaneously examine protein adsorption at the solid–liquid interface from sessile solution droplets. With axisymmetric drop shape analysis by profile (ADSA-P) the change in solid–liquid interfacial tension is determined, while ellipsometry is employed to measure the amount of protein adsorbed from the same solution droplet at the solid–liquid interface. Three proteins (human serum albumin (HSA), immunoglobulin G (IgG) and fibrinogen (Fb)) were dissolved to a concentration of 0.05 mg ml−1 in PBS (pH 7) and sessile droplets were placed for 2 h on a 47.8 nm thick gold coating on glass. The gold coated glass was positioned onto a quartz prism with immersion oil. The prism was aligned in a rotating analyser ellipsometer and the optical beam was thus allowed to be reflected at the hydrophobic gold surface. The ADSA-P set-up was built in 90° cross-beamed set-up around the prism. By combining the results for the adsorbed amounts and the interfacial tension changes over the two hour adsorption period, two stages in the adsorption process could be distinguished. In the first stage, the adsorbed amounts increase in correspondence with the interfacial tension changes, indicating that the interfacial tension changes are caused by adsorption, whereas in the second stage interfacial tension changes continue despite the adsorbed amounts being constant. Consequently, the second stage must be associated with conformational changes of the adsorbed proteins. For HSA and Fb, the conformational contribution to the interfacial tension changes (7.8 and 5.3 mJ m−2, respectively) were approximately 2-fold the adsorption contribution, while for IgG both were equal around 3 mJ m−2.  相似文献   

15.
A number of features of the adsorption of alkyl trimethylammonium bromides with nc=10,12,14, and 16 at the air/water interface were studied. First, the adsorption isotherms were calculated from experimental surface tension vs concentration curves by means of the Gibbs equation. Second, a novel method was used to estimate the adsorption free energy change. From the analysis of these data it was concluded that the hydrophobic driving force for the adsorption first increases with increasing adsorbed amount and then levels off in a plateau, which holds true for all four homologues. This peculiar behavior was interpreted by the formation of a thin liquid-like alkane film at the air/water interface once a certain adsorbed amount is exceeded. The hydrophobic contribution to the standard free energy change of adsorption was compared with those values previously determined for alkyl sulfate homologues. This comparison suggests that the alkyl trimethylammonium type surfactants behave as if their alkyl chain was approximately one methylene group shorter than those of the corresponding alkyl sulfates.  相似文献   

16.
In this paper the surface activity of protein mucin at solution/air interface has been studied. The experiments of the adsorbed protein at solution/air interface have been carried out with a range of protein concentrations at a defined pH. The adsorption of the protein to solid surfaces and the degree of hydrophobicity at solid/solution interface of mucin have been evaluated at different pH and in the presence of Hofmeister electrolyte. The results from these studies have been further substantiated by surface potential measurements of mucin covered surface on stainless steel. Quartz crystal microbalance (QCM) has been used to follow the protein adsorption kinetics from solution to solid surface. The results from these measurements show that the adsorption behavior has a remarkable dependence on the degree of maximum coverage and is almost independent of the ionic strength. Other characteristic features such as maximum adsorption values at the protein isoelectric point (IEP4.7) and low-affinity isotherms that showed surface saturation even under unfavorable electrostatic conditions have been observed. The amount of mucin adsorbed in the presence of electrolytes has been estimated using electron spectroscopy for chemical analysis (ESCA). The study clearly shows that there exists an inverse relationship between the hydrophobicity and surface tension of the protein and also on the hydrated radius of Hofmeister electrolyte used.  相似文献   

17.
The influence of synergistic interaction between sodium dodecylsulfate (SDS) and N,N-dimethyldodecan-1-amine oxide (DDAO) on their adsorption at air/water and solid/water interfaces at 20°C is investigated. The critical micelle concentration values obtained from surface tension measurements indicated strong synergism between SDS and DDAO, according to regular solution model. The excess surface concentration (Γ) and the minimum occupied area by single and mixed surfactant monomers (Amin) at liquid/air interface were also calculated. The adsorption onto the activated charcoal and silica was then measured to find out the correlation between surfactant synergism and their adsorption at solid/water interface. The amounts of surfactant adsorbed onto 1 wt% activated charcoal follow the trend: SDS/DDAO > DDAO > SDS. SDS molecules do not adsorb onto 5 wt% silica substrate, while SDS/DDAO mixed system was found to have the highest adsorption behavior. The obtained indicate that SDS can be removed from water by mixing it with amphoteric surfactant.  相似文献   

18.
Neutron reflectometry has been used to study the adsorption of two symmetrical cationic (dimethyl ammonium bromide) gemini surfactants with two C(12)H(25) chains and different partially fluorinated spacers at three different surfaces: air/water, hydrophilic silica/water, and hydrophobic (octadecyltricholorosilane (OTS))/water. In addition, the adsorption of purely hydrocarbon geminis with the same side chains and spacers of different lengths has been studied at the same two solid surfaces. The limiting close-packed areas for the two fluorocarbon geminis, C(12)-C(3)fC(6)C(3)-C(12) and C(12)-C(4)fC(4)C(4)-C(12), are 92 and 72 ± 4 at the hydrophilic silica surface, 81 and 89 ± 4 at OTS, and 137 and 106 ± 4 ?(2) at the air/water interface with decreases of 38 and 24% from air/water to the average solid value, respectively. These changes suggest that the packing at the air/water interface is inefficient, and this allows the extra hydrophobicity of the chain environment at the two solid surfaces to promote much more efficient packing. At the air/water interface, the fluorocarbon spacers are on average the fragments furthest away from the underlying water, further out than in the nearest comparable hydrocarbon gemini, C(12)-C(12)-C(12). This is the probable explanation of the much lower value of the area per molecule at the air/water interface of C(12)-C(4)fC(4)C(4)-C(12) compared to that of C(12)-C(12)-C(12). It is also the probable cause of the inefficient packing of the hydrocarbon side chains. At the more hydrophobic OTS surface the situation is reversed and the fluorocarbon spacers are now the furthest from the hydrophobic surface, further out than the spacer in C(12)-C(12)-C(12). This is an unusually large structural change that must be associated with the greatly improved packing at the OTS surface. The efficiency of the packing is also high for the hydrophilic surface, no doubt because the hydrocarbon chains can interact favorably in the adsorbed bilayer core. The values of the area per molecule obtained for the series of hydrocarbon geminis at the air/water, OTS/water and silica/water interfaces are respectively 139, 104, and 98 ± 4 ?(2) for C(12)-C(12)-C(12), 114, 106, and 94 ± 4 ?(2) for C(12)-C(10)-C(12), 104, 84, and 85 ± 4 ?(2) for C(12)-C(6)-C(12), and 78, 66, and 70 ± 3 ?(2) for C(12)-C(3)-C(12). The area per molecule is also about 20% less on average at the two solid surfaces than at the air/water interface. This can also be attributed to more efficient packing caused by the more favorable hydrophobic interactions possible at these two surfaces than at the air/water interface, again showing that the packing at the air/water interface is inefficient and probably resulting from the competition between spacer and chains, which will be most pronounced for the C(12) spacer.  相似文献   

19.
The adsorption of bovine serum albumin (BSA) at the air/water interface and its effect on the transport of dipalmitoylphosphatidylcholine (DPPC) to form a surface film were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. For 1, 10, 100, and 1000 ppm BSA solutions, the steady-state tension ranges from 55 to 50 mN m−1. At pulsating area (at 20 cycles min−1), both the minimum and maximum tensions decrease with increasing bulk concentration. Even though the steady-state tension is similar for 100 and 1000 ppm BSA, IRRAS and ellipsometry results indicate that the adsorbed density is higher for 1000 ppm BSA. For 1000 ppm/1000 ppm BSA/DPPC mixture, the tension behavior was found to be similar to that of 1000 ppm BSA when alone. Results from IRRAS and ellipsometry also demonstrate that BSA is the dominant adsorbed component at the air/water interface. Thus, at 1000 ppm, by adsorbing fast and possibly irreversibly, BSA interferes with the transport and adsorption of DPPC and inhibits its ability to lower the surface tension. However, when DPPC is introduced via a spread monolayer mechanism, DPPC expels partly or completely the adsorbed BSA monolayer and then controls the tension behavior with little or no inhibition by BSA. Thus, the competitive adsorption of DPPC and BSA depends strongly on the path or mechanism of introducing DPPC to the surface and involves path-dependent nonequilibrium adsorption phenomena.  相似文献   

20.
Tangential flow affinity membrane cartridge (TFAMC) is a new model of immunoadsorption therapy for hemoperfusion. Recombinant Protein A was immobilized on the membrane cartridge through Schiff base formation for extracorporeal IgG and immune complex removal from blood. Flow characteristics, immunoadsorption capacity and biocompatibility of protein A TFAMC were studied. The results showed that the pressure drop increased with the increasing flow rate of water, plasma and blood, demonstrating reliable strength of membrane at high flow rate. The adsorption capacities of protein A TFAMC for IgG from human plasma and blood were measured. The cartridge with 139 mg protein A immobilized on the matrix (6 mg protein A/g dry matrix) adsorbed 553 mg IgG (23.8 mg IgG/g dry matrix) from human plasma and 499.4 mg IgG (21.5 mg IgG/g dry matrix) from human blood, respectively. The circulation time had a major influence on IgG adsorption capacity, but the flow rate had little influence. Experiments in vitro and in vivo confirmed that protein A TFAMC mainly adsorbed IgG and little of other plasma proteins, and that blood cell damage was negligible. The extracorporeal circulation system is safe and reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号