首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the simultaneous separation of several polyphenols such as (+)‐catechin, (–)‐epicatechin, (–)‐epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 μm) packed with bidentate C18 particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H2O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20°C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R2 > 0.9992) was achieved over a concentration working range of 2–100 μg/mL for all the analytes. LOD and LOQ were 1 and 2 μg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.  相似文献   

2.
The separation and simultaneous determination of caffeine, paracetamol, and acetylsalicylic acid in two analgesic tablet formulations was investigated by capillary electrochromatography (CEC). The effect of mobile phase composition on the separation and peak efficiency of the three analytes was studied and evaluated; in particular, the influence of buffer type, buffer pH, and acetonitrile content of the mobile phase was investigated. The analyses were carried out under optimized separation conditions, using a full-packed silica capillary (75 microm ID; 30.0 cm and 21.5 cm total and effective lengths, respectively) with a 5 microm C8 stationary phase. A mixture of 25 mM ammonium formate at pH 3.0 and acetonitrile (30:70 v/v) was used as the mobile phase. UV detection was at 210 nm. Good linearity was found in the range of 50-200, 20-160, and 4-20 microg/mL for acetylsalicylic acid (r2=0.9988), paracetamol (r2=0.9990) and caffeine (r2=0.9990), respectively. Intermediate precision (RSD interday) as low as 0.1-0.8% was found for retention times, while the RSD values for the peak area ratios (Aanalyte/AIS) were in the range of 1.9-2.9%. The optimized CEC method was applied to the analysis of the studied compounds present in commercial tablets.  相似文献   

3.
Microemulsion electrokinetic chromatography (MEEKC) coupled with a diode-array detector was developed for the simultaneous analysis of natural steroidal compounds, withanolides including withaferin A, withacnistin and iochromolide. Optimal resolution was obtained with a microemulsion consisting of 70 mM octane, 800 mM 1-butanol, 100 mM sodium dodecyl sulfate (SDS), and 10 mM phosphate-borate buffer (pH 7) using a fused-silica capillary at 25 kV and 40 degrees C. Since this technique is not compatible with mass spectrometry detection, a capillary electrochromatographic method was developed to separate the investigated withanolides. The effects of mobile phase composition and pH were systematically investigated. Complete separation was obtained with a capillary electrochromatography (CEC) Hypersil C18 bonded silica column (packed length, 25 cmx100 microm ID and 375 microm OD), packed with 3 microm particles. The mobile phase consisted of formic acid-ammonia, pH 8 / acetonitrile (40/60 v/v); the voltage was set at 25 kV and the temperature at 20 degrees C. Under these conditions, resolution of these closely related compounds, including the critical pair withacnistin and iochromolide, was achieved in less than 5 min. The separations by MEEKC and CEC were compared with that obtained by reversed-phase liquid chromatography and showed similar retention order, indicating the analogy of the retention mechanism of these techniques. To further improve specificity and sensitivity, the developed CEC method was interfaced with electrospray ionization mass spectrometry using a Teflon connection between the CEC column and a void fused-silica capillary. Finally, the described methods were applied to the qualitative analysis of withanolides in Iochroma gesnerioides plant extract.  相似文献   

4.
This work reports the first use of a monolith with method development for the separation of tocopherol (TOH) compounds by CEC with UV detection. A pentaerythritol diacrylate monostearate-ethylene dimethacrylate (PEDAS-EDMA) monolithic column has been investigated for an optimised condition to separate alpha-, beta-, gamma- and delta-TOHs, and alpha-tocopherol acetate (TAc). The PEDAS-EDMA monolith showed a remarkably good selectivity for separation of the TOH isomers including the beta- and gamma-isomers which are not easily separated by standard C8 or C18 particle-packed columns. Retention studies indicated that an RP mechanism was involved in the separation on the PEDAS-EDMA column, but polar interactions with the underlying ester and hydroxyl groups enhanced the separation of the problematic beta- and gamma-isomers. Separation of all the compounds was achieved within 25 min using 3:10:87 v/v/v 100 mM Tris buffer (pH 9.3)/methanol/ACN as the mobile phase. The method was successfully applied to a pharmaceutical sample with recoveries from 93 to 99%. Intraday and interday precisions (%RSD) for peak area and retention time were less than 2.3. LODs for all four TOHs and TAc were below 1 ppm.  相似文献   

5.
In this work, the simultaneous enantioseparation of the second-generation antidepressant drug mirtazapine and its main metabolites 8-hydroxymirtazapine and N-desmethylmirtazapine by chiral CEC is reported. The separation of all enantiomers under study was achieved employing a capillary column packed with a vancomycin-modified diol stationary phase. With the aim to optimize the separation of the three pairs of enantiomers in the same run, different experimental parameters were studied including the mobile phase composition (buffer concentration and pH, organic modifier type and ratio, and water content), stationary phase composition, and capillary temperature. A capillary column packed with vancomycin mixed with silica particles in the ratio (3:1) and a mobile phase composed of 100 mM ammonium acetate buffer (pH 6)/H(2)O/MeOH/ACN (5:15:30:50, by vol.) allowed the complete enantioresolution of each pair of enantiomers but not the simultaneous separation of all the studied compounds. For this purpose, a packing bed composed of vancomycin-CSP only was tested and the baseline resolution of the three couples of enantiomers was achieved in a single run in less than 30 min, setting the applied voltage and temperature at 25 kV and 20 degrees C, respectively. In order to show the potential applicability of the developed CEC method to biomedical analysis, a study concerning precision, sensitivity, and linearity was performed. The method was then applied to the separation of the enantiomers in a human urine sample spiked with the studied compounds after suitable SPE procedure with strong cation-exchange (SCX) cartridges.  相似文献   

6.
A reversed-phase liquid chromatographic (LC) method was developed and validated for the simultaneous determination of ezetimibe and simvastatin in pharmaceutical dosage forms. The LC method was carried out on a Synergi fusion C18 column (150 mm x 4.6 mm id) maintained at 45 degrees C. The mobile phase consisted of phosphate buffer 0.03 M, pH 4.5-acetonitrile (35 + 65, v/v) run at a flow rate of 0.6 mL/min, and detection was made using a photodiode array detector at 234 nm. The chromatographic separation was obtained within 15.0 min, and calibration graphs were linear in the concentration range of 0.5-200 microg/mL. Validation parameters such as specificity, linearity, precision, accuracy, and robustness were evaluated, giving results within the acceptable range for both compounds. Moreover, the proposed method was successfully applied for the routine quality control analysis of pharmaceutical products.  相似文献   

7.
Norton D  Rizvi SA  Shamsi SA 《Electrophoresis》2006,27(21):4273-4287
The CEC-MS of alkyltrimethylammonium (ATMA+) ions with chain lengths ranging from C1-C18 is optimized using an internally tapered column packed with mixed mode reversed phase/strong cation exchange stationary phase. A systematic study of the CEC separation parameters is conducted followed by evaluation of the ESI-MS sheath liquid and spray chamber settings. First, the optimization of CEC separation parameters are performed including the ACN concentration, triethylamine (TEA) content, buffer pH and ammonium acetate concentration. Using 90% v/v ACN with 0.04% v/v TEA as mobile phase, the separation of longer chain C6-C18-TMA+ surfactants could be achieved in 15 min. Lowering the ACN concentration to 70% v/v provided resolution of shorter chain C1, C2-TMA+ from C6-TMA+ although the total analysis time increased to 40 min. Furthermore, variation of both the ACN and TEA content as well as ionic strength has found to significantly influence the retention of longer chain surfactants as compared to shorter chains. The optimum CEC conditions are 70% v/v ACN, 0.04% v/v TEA, pH 3.0 and 15 mM ammonium acetate. Next, the optimization of the ESI-MS sheath liquid composition is conducted comparing methanol to isopropanol followed by the use of experimental design for analysis of spray chamber parameters. Overall, the developed CEC-ESI-MS method allows quantitative and sensitive monitoring of ATMA+ from < or =10 microg/mL down to 10 ng/mL. Utilizing the optimized CEC-ESI-MS protocol, the challenging analysis of commercial sample Arquad S-50 ATMA+ containing cis-trans unsaturated and saturated soyabean fatty acid derivatives is demonstrated.  相似文献   

8.
In this work, a novel polysaccharide‐based chiral stationary phase, cellulose tris(4‐chloro‐3‐methylphenylcarbamate), also called Sepapak 4 has been evaluated for the chiral separation of amlodipine (AML) and its two impurities. AML is a powerful vasodilatator drug used for the treatment of hypertension. Capillary columns of 100 μm id packed with the chiral stationary phase were used for both nano‐LC and CEC experiments. The optimization of the mobile phase composed of ACN/water, (90:10, v/v) containing 15 mM ammonium borate pH 10.0 in nano‐LC allowed the chiral separation of AML and the two impurities, but not in a single run. With the purpose to obtain the separation of the three pairs of enantiomers simultaneously, CEC analyses were performed in the same conditions achieving better enantioresolution and higher separation efficiencies for each compound. To fully resolve the mixture of six enantiomers, parameters such as buffer pH and concentration sample injection have been then investigated. A mixture of ACN/water (90:10, v/v) containing 5 mM ammonium borate buffer pH 9.0 enabled the complete separation of the three couples of enantiomers in less than 30 min. The optimized CEC method was therefore validated and applied to the analysis of pharmaceutical formulation declared to contain only AML racemate.  相似文献   

9.
Herba Epimedii (known as Yinyanghuo in China) is one of the commonly used Chinese medicines. Flavonoids are considered as its active components. In this study, a CEC method was developed for the simultaneous determination of seven flavonoids, including hexandraside E, kaempferol-3-O-rhamnoside, hexandraside F, icariin, epimedin A, B, and C, in Epimedium using baicalein as internal standard (IS). The influence of relevant parameters such as buffer concentration, pH, and proportion of ACN was investigated and optimized. Baseline separation was obtained using a Hypersil C18 capillary (3 microm, 100 microm/25 cm) with a mixture of 20 mM phosphate buffer (pH 4.0)/ACN (70:30 v/v) as mobile phase running at 30 kV and 25 degrees C in 20 min. All calibration curves showed good linearity (r2 >0.9992) within test ranges. The LOD and LOQ were lower than 8.6 and 42.8 microg/mL, respectively. The RSDs of intra- and interday for relative peak areas of seven analytes were less than 3.1 and 4.4%, and the recoveries were 95.2-103.3%. Samples of different Epimedium species were analyzed using the validated method, which is useful for quality control of Epimedium and its medical preparations.  相似文献   

10.
In this study, we present a capillary electrochromatographic method for separation of basic compounds of interest in forensic science (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyethylamphetamine, cocaine, codeine, heroin, morphine, and 6-monoacethylmorphine). Several analytical conditions were taken into account to completely separate in the same run the 10 drugs of abuse analyzed. Chromatographic retention, selectivity and efficiency were evaluated in dependence of the type of stationary phase (CN and RP-C18 derivatized silica particles), mobile phase composition, buffer type and pH, sample injection. The optimum separation parameters were set up using a mixture of aqueous sodium phosphate buffer (pH 2.5)/acetonitrile (80/20, v/v) as the mobile phase, 10 kV and 20 °C as applied voltage and capillary temperature, respectively. Under these conditions all the studied analytes were baseline resolved within 20 min. The method performance was investigated in terms of precision, linearity, sensitivity and accuracy to demonstrate the applicability of the developed capillary electrochromatographic system to forensic analysis. Calibration curves provided a good linearity over a working range of 100–1200 ng/mL for all analytes. Limits of detection and quantification were in the range 5–12 ng/mL and 10–30 ng/mL, respectively. Then the method was applied to the analysis of a human urine sample spiked with a basic compounds’ mixture. Urine samples’ pre-treatment was carried out through a solid phase extraction (SPE) procedure on strong cation exchange (SCX) cartridges.  相似文献   

11.
The separation of eight antibiotics belonging to 5‐nitroimidazole family was carried out by means of CEC coupled with MS. Preliminary experiments were carried out with ultraviolet detection in order to select the proper stationary and mobile phase. Among the different stationary phases studied (namely Lichrospher C18, 5 μm particle size; CogentTM Bidentate C18, 4.2 μm; Pinnacle II? Phenyl, 3 μm; Pinnacle II? Cyano, 3 μm), Cogent? Bidentate C18 (4.2 μm) gave the best performance. For CEC‐MS coupling, a laboratory assembled liquid‐junction‐nano‐spray interface was used. In order to achieve a good sensitivity, special attention was paid to both optimization of the sheath liquid composition as well as selection of the injection mode. Under optimized CEC‐ESI‐MS conditions, the separation was accomplished within 22 min by using a column packed with a mixture of Bidentate C18:Lichrospher Silica‐60 (5 μm) 3:1 w/w, an inlet pressure of 11 bar, a voltage of 15 kV, and a mobile phase composed by 45:10:45 v/v/v ACN/MeOH/water containing ammonium acetate (5 mM pH 5). A combined hydrodynamic and electrokinetic injection of 8 bar, 15 kV, and 96 s was adopted. The method was validated in terms of repeatability and intermediate precision of retention times and peak areas, linearity, and LODs and LOQs. RSDs values were <2.9% for retention times and <16.1% for peak areas in both intraday and interday experiments. LOQ values were between 0.09 and 0.42 μg/mL for all compounds. Finally, the method was applied to the determination of three most employed 5‐nitroimidazole antibiotics (metronidazole, secnidazole, and ternidazole) in spiked urine samples, subjected to a SPE procedure. Recovery values in the 67–103% range were obtained. Furthermore, for the selected antibiotics, CEC‐MS2 spectra were obtained providing the unambiguous confirmation of these drugs in urine samples.  相似文献   

12.
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.  相似文献   

13.
Flavonoids were separated utilizing CEC technique. Baseline separation of biologically relevant flavonoids was obtained using a 100 microm ID fused-silica capillary filled with 3 microm Silica-C18 material and an optimized mobile phase comprising of 20 mM Tris-HCl (pH 6.5), ACN and water at a ratio of 10/40/50 v/v/v. Separations were carried out at 25 kV and a column temperature of 25 degrees C. The influence of relevant parameters for the CEC separation, such as buffer concentration, pH, separation voltage, and ACN concentration, was investigated and optimized. Dependencies of the electroendoosmotic flow (EOF) on these parameters and effects on the resolution of the analytes were studied. During analyses the solvents used for dissolving the samples turned out to have significant effects on the separation of flavonoids. The optimized system was then successfully used for the separation of the flavonoids epicatechin, myricetin, quercetin, naringenin, and hesperetin. CEC turned out to be a useful complementary tool for the economic analysis of flavonoids in addition to common HPLC, muHPLC, and CE methodologies. This method can be used for real applications in phytomics.  相似文献   

14.
Chromatographic methods have been developed for the separation of the three novel biocompatible iron chelators pyridoxal isonicotinoyl hydrazone (PIH), salicylaldehyde isonicotinoyl hydrazone (SIH), and pyridoxal 2-chlorobenzoyl hydrazone (o-108) from their synthetic precursors and iron chelates. The chromatographic analyses were achieved using analytical columns packed with 5 microm Nucleosil 120-5 C18. For the evaluation of all chelators in the presence of the synthetic precursors, EDTA was added to the mobile phase at a concentration of 2 mM. The best separation of PIH and its synthetic precursors was achieved using a mixture of phosphate buffer (0.01 M NaH2PO4, 5 mM 1-heptanesulfonic acid sodium salt; pH 3.0) and methanol (55:45, v/v). For separation of SIH and its synthetic precursors, the mobile phase was composed of 0.01 M phosphate buffer (pH 6.0) and methanol (60:40, v/v). o-108 was analyzed employing a mixture of 0.01 M phosphate buffer (pH 7.0), methanol, and acetonitrile (60:20:20, v/v/v). These mobile phases were slightly modified to separate each chelator from its iron chelate. Furthermore, a RP-TLC method has also been developed for fast separation of all compounds. The chromatographic methods described herein could be applied in the evaluation of purity and stability of these drug candidates.  相似文献   

15.
A monolithic molecularly imprinted polymer (MIP) column was prepared as the stationary phase for the capillary electrochromatographic (CEC) separation of a group of structurally related compounds including dopamine (DA), (±)-epinephrine (EP), (-)-isoproterenol (ISO), (±)-norepinephrine (NE), (±)-octopamine (OCT), and (±)-synephrine (SYN). Here, (-)-NE was used as the template. Either methacrylic acid (MAA) or itaconic acid (IA) together with a mixture of ethylene glycol dimethacrylate (EDMA) and α,α'-azobis(isobutyronitrile) (AIBN) in N,N-dimethylformamide (DMF) was introduced into a pre-treated, silanised, fused-silica capillary by a thermal non-covalent polymerisation procedure. Optimised conditions for the polymerisation reaction were assessed by the separation efficiency of the template. Both the template/monomer/cross linker molar ratio and the compositions of the functional monomer, cross-linker, and porogen affected polymerisation. The optimum in situ polymerisation reaction was performed at 65 °C for 17 min. By varying CEC parameters like eluent composition and pH, we observed that the addition of SDS to the eluent clearly improved the CEC separations. With a mobile phase of citrate buffer (10 mM, pH 3)/SDS (40 mM)/acetonitrile (2/2/1, v/v/v) solution and an applied voltage of 10 kV, the six related structures of the template and their enantiomeric mixtures were satisfactorily separated at 30 °C.  相似文献   

16.
This work presents a fast method for the simultaneous separation and determination of glimepiride, glibenclamide, and two related substances by RP LC. The separation was performed on a Chromolith Performance (RP-18e, 100 mm x 4.6 mm) column. As mobile phase, a mixture of phosphate buffer pH 3, 7.4 mM, and ACN (55:45 v/v) was used. Column oven temperature was set to 30 degrees C. The total chromatographic run time was 80 s. This was achieved using a flow program from 5 to 9.9 mL/min. Precisions of the interday and the intraday assay for both retention times and peak areas for the four analyzed compounds were less than 1.2%. The method showed good linearity and recovery. The short analysis time makes the method very valuable for quality control and stability testing of drugs and their pharmaceutical preparations.  相似文献   

17.
Chen X  Zou H  Ye M  Zhang Z 《Electrophoresis》2002,23(9):1246-1254
A cellulose trisphenylcarbamate-bonded chiral stationary phase was applied to nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) with nonaqueous and aqueous solutions as the mobile phases. Several chiral compounds were successfully resolved on the prepared phase by nano-LC. The applicability of nonaqueous CEC on a cellulose derivative stationary phase was investigated with the organic solvents methanol, hexane, 2-propanol, and tetrahydrofuran (THF) containing acetic acid, as well as triethylamine as the mobile phases. Enantiomers of warfarin and praziquantel were baseline-resolved with plate numbers of 82,300 and 38,800 plates/m, respectively, for the first eluting enantiomer. The influence of applied voltage, concentration of nonpolar solvent, apparent pH, and buffer concentration in the mobile phase on the electroosmotic flow (EOF) and the mobility of the enantiomers was evaluated. Enantioseparations of trans-stilbene oxide and praziquantel were also achieved in aqueous CEC with plate numbers of 111,100 and 107,400 plates/m, respectively, for the first eluting enantiomer. A comparison between nonaqueous CEC and aqueous CEC based on a cellulose trisphenylcarbamate stationary phase was discussed. Pressure-assisted CEC was examined for the chiral separation of praziquantel and faster analysis with high enantioselectivity was acquired with the proper pressurization of the inlet vial.  相似文献   

18.
A new method, pressurized CEC with end‐column amperometric detection using carbon paste electrode, has been developed for the separation and determination of five phenolic xenoestrogens in chicken eggs and milk powder samples. Efficient separation of five analytes was performed by pressurized CEC using a mobile phase consisting of 60% v/v ACN and 40% v/v Tris buffer (5 mmol/L, pH 8.0), +6 kV of applied voltage and 7.0 MPa of supplementary pressure. Detection limits of 50, 5, 2, 10 and 20 ng/mL for pentachlorophenol, bisphenol‐A, 2,4‐dichlorophenol, 4‐tert‐octylphenol and 4‐nonylphenol, respectively, were achieved using carbon paste electrode as working electrode and +0.8 V as detection potential. Matrix solid phase dispersion extraction method had been employed during sample preparation procedure, and mean recoveries ranged from 79.2 to 102.6% at different concentrations of phenolic xenoestrogens for spiked egg and milk powder samples were obtained.  相似文献   

19.
A capillary electrochromatographic (CEC) method was applied to the simultaneous separation of barbiturates (barbital, phenobarbital, secobarbital and thiopental) and benzodiazepines (nitrazepam, diazepam and triazolam). The separation was performed in a 75 microm i.d. capillary, packed with 3-(1,8-naphthalimido)propyl-modified silyl silica gel (NAIP), studying the effects of buffer pH and mobile phase composition. Using an applied voltage of 20 kV and the short-end injection method (9 cm capillary effective length), the mobile phase of 1.0 mM citrate buffer (pH 5.0) containing 45% methanol provided the baseline separation of seven toxic drugs in less than 9 min. In CEC with NAIP, the benzodiazepines were separated by the combination of hydrophobic and pi-pi interactions, whereas the separation of the barbiturates was based on the hydrophobic interaction.  相似文献   

20.
A method based on RP-HPLC with indirect UV detection was developed for the determination of phosphates and phosphites as impurities in sodium risedronate. RP separation of the phosphates and phosphites was achieved by adding tetrabutylammonium hydroxide as an ion-pairing agent in the mobile phase. Potassium hydrogen phthalate was added to the mobile phase as an ionic chromophore in order to obtain high background absorption of the mobile phase. Separation was performed on a C18 column using a mixture of pH 8.2 buffer (containing 0.5 mM tetrabutylammonium hydroxide and 1 mM phthalate) and acetonitrile (95 + 5, v/v) as the mobile phase, with indirect UV detection at 248 nm. The validation of the method included determination of specificity/selectivity, linearity, LOD, LOQ, accuracy, precision, and robustness. The LOD was 0.86 microg/mL for phosphates and 0.76 microg/mL for phosphites. The LOQ was 2.60 microg/mL for phosphates and 2.29 microg/mL for phosphites. The developed method is suitable for quantitative determination of phosphates and phosphites as impurities in QC of sodium risedronate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号