首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new analytical approach based on gas chromatography coupled to atmospheric pressure chemical ionization-time of flight mass spectrometry was evaluated for its applicability for the analysis of phenolic compounds from extra-virgin olive oil. Both chromatographic and MS parameters were optimized in order to improve the sensitivity and to maximize the number of phenolic compounds detected. We performed a complete analytical validation of the method with respect to its linearity, sensitivity, precision, accuracy and possible matrix effects. The LODs ranged from 0.13 to 1.05ppm for the different tested compounds depending on their properties. The RSDs for repeatability test did not exceed 6.07% and the accuracy ranged from 95.4% to 101.5%. To demonstrate the feasibility of our method for analysis of real samples, we analyzed the extracts of three different commercial extra-virgin olive oils. We have identified unequivocally a number of phenolic compounds and obtained quantitative information for 21 of them. In general, our results show that GC-APCI-TOF MS is a flexible platform which can be considered as an interesting tool for screening, structural assignment and quantitative determination of phenolic compounds from virgin olive oil.  相似文献   

2.
A CZE method for the separation and quantitation of phenolic acids (cinnamic, syringic, p-coumaric, vanillic, caffeic, 3,4-dihydroxyphenylacetic, protocatechuic), extracted from extra virgin olive oil, was developed. The sample preparation involved the LLE and SPE extraction methods. CE separation was performed in a fused silica capillary of I.D.= 50microm using as a BGE 40 mM borate buffer at pH=9.2. The separation voltage was 18kV with corresponding current of 27-28 microA. Detection was accomplished with UV-detector at lambda=200nm. The proposed method was fully validated. A good repeatability of migration time (RSD% ranged from 0.81 to 1.63) and of corrected peak area (RSD% from 2.89 to 5.77) was obtained. The linearity of detector response in the range from 5 to 50 ppm was checked, obtaining the correlation coefficient R2 values in the range: 0.9919-0.9997. Some phenolic acids in real oil samples were detected and quantified with the proposed method.  相似文献   

3.
The hydrophilic extract of virgin olive oil contains several phenolic compounds such as simple phenols, lignans, and secoiridoids that have been widely studied in recent years. Interest in the hydrophilic extract has also been extended to the fraction of oxidized phenols that form during storage as a consequence of oxidative stress. The present investigation compares the two most commonly used extraction methods, namely liquid-liquid extraction and SPE, on fresh virgin olive oil and that kept at different temperatures in the presence of oxygen to promote the formation of oxidative products. The selective retention of these natural and oxidized phenolic compounds in relation to the extraction method was assessed. Quantification of eight identified phenolic molecules and 11 unknown peaks was performed by HPLC-DAD/MSD.  相似文献   

4.
In this study, accelerated storage tests were carried out at 60 °C up to 20 weeks on three extra virgin olive oils (Evoos) with different total phenol contents and fatty acid compositions (named as EvooA, EvooB, and EvooC). Their oxidative statuses, evaluated by means of primary oxidation value and total phenolic content, were related to both the shapes of differential scanning calorimetry (DSC) cooling curves and thermal properties. DSC cooling curves were all deconvoluted as crystallization occurs in a quite narrow range, and the single steps are not well separated. The first deconvoluted DSC peak for the three samples tested, which occurs in the temperature interval between −45 °C and −30 °C, can probably be ascribable to the crystallization of tri-unsaturated triacylglycerols. A non-isothermal crystallization kinetic procedure, derived by the well-known isothermal Avrami equation, combined with the method of Ozawa, was applied to the first deconvoluted DSC peak only by processing the data related to this DSC peak. Results of the modified Avrami method were found in agreement with those of the Ozawa method. In particular, Avrami and Ozawa's exponents lie from 2 to 4 (being those of fresh samples always lower than those subjected to the accelerated oxidation test). Crystallization is relatively slow for fresh samples whereas after the first 4 weeks; it occurs faster in EvooB and EvooC.  相似文献   

5.
The potential of fluorescence spectroscopy for characterizing the deterioration of extra virgin olive oil (EVOO) during heating was investigated. Two commercial EVOO were analysed by HPLC to determine changes in EVOO vitamin E and polyphenols as a result of heating at 170°C for 3 h. This thermal oxidation of EVOO caused an exponential decrease in hydroxytyrosol and vitamin E (R2=0.90 and 0.93, respectively) whereas the tyrosol content was relatively stable. At the same time, amounts of preformed hydroperoxides (ROOH), analysed by an indirect colorimetric method, decreased exponentially during the heating process (R2=0.94), as a result of their degradation into secondary peroxidation products. Fluorescence excitation spectra with emission at 330 and 450 nm were recorded to monitor polyphenols and vitamin E evolution and ROOH degradation, respectively. Partial least-squares calibration models were built to predict these indicators of EVOO quality from oil fluorescence spectra. A global approach was then proposed to monitor the heat charge from the overall fluorescence fingerprint. Different data pretreatment methods were tested. This study indicates that fluorescence spectroscopy is a promising, rapid, and cost-effective approach for evaluating the quality of heat-treated EVOO, and is an alternative to time-consuming conventional analyses. In future work, calibration models will be developed using a wide range of EVOO samples.  相似文献   

6.
The separation of basic solutes at low pH by capillary electrochromatography (CEC) has been investigated. The feasibility of separation of basic solutes by CEC was demonstrated. Influence of operational parameters, solvent composition, pH, temperature on retention and selectivity of the separation of a mixture of basic, neutral and acidic drug standards has been investigated. The observed elution behavior has been modeled to account for both chromatographic retention and differential electrophoretic mobility of the solutes. This model was verified experimentally. It is demonstrated in this work that the elution window of solutes in reversed-phase CEC is expanded to range from -1 to infinity.  相似文献   

7.
The indirect resolution of five beta-adrenoreceptor blocking agents (propranolol, oxprenolol, pindolol, metoprolol, and atenolol) using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate (FLEC), and capillary electrochromatography (CEC) is reported. Three octadecylsilanized (ODS) silica gel-based stationary phases, differing in particle diameter and carbon surface density for suitability of determination of the enantiomeric composition of these substances in drugs and biological fluids, were studied. Under optimum separation conditions, all the investigated compounds were baseline-resolved within acceptable analysis times (i.e., between 10-16 min). The resolution values ranged between 1.80 and 1.14, and the separation factors were in no case less than 1.07. The possible use of the developed CEC method for the determination of enantiomeric composition of beta-adrenoreceptor blocking agents in drug substances was investigated. A study, in which the enantiomers of metoprolol were examined regarding specificity, reproducibility, limit of detection, and ruggedness, was developed in accordance with some analytical procedures for method validation.  相似文献   

8.
Capillary electrophoretic separations have been investigated for six controlled narcotic analgesic compounds having related structures. Owing to the similar charge-to-mass ratios of these compounds, capillary zone electrophoresis failed to provide a satisfactory separation, whereas a baseline-resolved separation was achieved in 10 min using micellar electrokinetic chromatography. Column efficiencies of 40,000-150,000 plates/m were obtained with a 50 cm long, 50 microm inner diameter (ID) capillary using 50 mM sodium dodecyl sulfate (SDS) in a 50 mM borate solution containing 12% isopropanol. In contrast, separation of this mixture by capillary electrochromatography proved to be significantly superior. The capillary was 15 cm long, with an ID of 75 microm, and was packed with 1.5 microm nonporous octadecyl silica (ODS) particles. The mobile phase consisted of 80% 10 mM tris(hydroxymethyl)aminomethane (Tris) and 20% acetonitrile, and contained 5 mM SDS. A complete separation was obtained in 2.5 min with an efficiency of 250,000-500,000 plates/m.  相似文献   

9.
Fourteen phenolic acids have been selectively determined in olive-oil samples using the co-electrosmotic capillary electrophoresis mode with UV detection after the LLE extraction system. A polycationic surfactant (hexadimetrine bromide, HDB), which dynamically coats the inner surface of the capillary and causes a fast anodic electroosmotic flow, was added to the electrolyte. The main factors affecting co-electroosmotic flow (EOF) such as type of modifier, concentration, and influence of organic solvents have been studied. Other parameters such as pH, type, and concentration of buffer, applied voltage, and injection time were also optimised using hydrodynamic injection for 8 s and UV detection at 210 nm. The composition optimum of the running buffer used was a 20% 2-propanol, 0.001% HDB, and 50 mM sodium borate at a pH value of 9.6. The method has been applied to determination and quantification of fourteen phenolic acids at ppb levels in olive oil samples after a liquid-liquid extraction.  相似文献   

10.
This paper presents the development of a non-aqueous capillary electrophoresis method coupled to UV detection combined with multivariate curve resolution-alternating least-squares (MCR-ALS) to carry out the resolution and quantitation of a mixture of six phenolic acids in virgin olive oil samples. p-Coumaric, caffeic, ferulic, 3,4-dihydroxyphenylacetic, vanillic and 4-hydroxyphenilacetic acids have been the analytes under study. All of them present different absorption spectra and overlapped time profiles with the olive oil matrix interferences and between them. The modeling strategy involves the building of a single MCR-ALS model composed of matrices augmented in the temporal mode, namely spectra remain invariant while time profiles may change from sample to sample. So MCR-ALS was used to cope with the coeluting interferences, on accounting the second order advantage inherent to this algorithm which, in addition, is able to handle data sets deviating from trilinearity, like the data herein analyzed. The method was firstly applied to resolve standard mixtures of the analytes randomly prepared in 1-propanol and, secondly, in real virgin olive oil samples, getting recovery values near to 100% in all cases. The importance and novelty of this methodology relies on the combination of non-aqueous capillary electrophoresis second-order data and MCR-ALS algorithm which allows performing the resolution of these compounds simplifying the previous sample pretreatment stages.  相似文献   

11.
Two mathematical methods to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO), refined olive-pomace oil (ROPO), sunflower (SO) or corn (CO) oils have been described here. These methods are linear and non linear models based on chaotic parameters (CPs, Lyapunov exponent, autocorrelation coefficients and two fractal dimensions) which were calculated from UV-vis scans (190-900 nm wavelength) of 817 adulterated EVOO samples. By an external validation process, linear and non linear integrated CPs/UV-vis models estimate concentrations of adulterant agents with a mean correlation coefficient (estimated versus real concentration of cheaper oil) greater than 0.80 and 0.97 and a mean square error less than 1% and 0.007%, respectively. In the light of the results shown in this paper, the adulteration of EVOO with ROO, ROPO, SO and CO can be suitably detected by only one chaotic parameter integrated on a radial basis network model.  相似文献   

12.
In recent years it has been confirmed that the consumption of olive oil prevents the oxidation of biomolecules owing to its monounsaturated fatty acids (MUFA) and phenolic content. The main objective of the study was to develop an ultra‐high‐performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the determination of phenolic compounds in human high‐density lipoprotein (HDL) samples. At the same time, the influence of olive oil consumption on the phenolic metabolite levels was evaluated in a European population. The participants were 51 healthy men, aged 20–60. They were randomized to two consecutive intervention periods with the administration of raw olive oil with low and high polyphenolic content. The UHPLC‐MS/MS analytical method has been validated for hydroxytyrosol and homovanillic acid in terms of linearity (r2 = 0.99 and 1.00), repeatability (5.7 and 6.5%) reproducibility (6.2 and 7%), recovery (98 to 97%), limits of detection (1.7 to 1.8 ppb) and quantification (5.8 and 6.3 ppb).The levels of the studied metabolites increased significantly after high polyphenolic content virgin olive oil ingestion (p <0.05) compared with lowpolyphenolic content olive oil. Virgin olive oil consumption increases the levels of phenolic metabolites in HDL and thus provides human HDL with more efficient antioxidant protection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this study the qualitative and quantitative content of the biophenolics in virgin olive oils is evaluated by liquid chromatography‐tandem mass spectrometry. The extraction and purification method for these compounds from virgin oils was optimised. After liquid‐liquid and solid‐phase extraction the separation of 35 of these compounds was achieved on reversed phase in gradient mode. The detection was preliminarily by UV and fluorescence, but then the final choice was ion‐spray tandem mass spectrometry in multiple reaction monitoring mode in negative ionization, acquiring two diagnostic product ions from the chosen precursor [M—H]. Using this last approach we obtained the best sensitivity, selectivity, and specificity. The recovery of the method ranged from 70–90% and detection limits were less than 1 ng for all the analyzed compounds.  相似文献   

14.
Reversed-phase capillary electrochromatography in a 5-microm C18 fully packed capillary was employed to optimize the separation of negatively charged nonsteroidal anti-inflammatory drugs. The effect of the physico-chemical parameters and different analysis modes on the separation of 2-arylpropionic acids was studied and evaluated. The mobile phase composition, buffer type, concentration and pH differently influenced the peak efficiency and resolution, selectively modulating the analytes interaction with the stationary phase. The use of zwitterionic MES or acetate mobile phases strongly modulated the analytes migration order and peak efficiency. The optimum experimental conditions were found in MES buffer, pH 5.0, containing the 75% acetonitrile-methanol (1:1). All the analytes were baseline separated in a mixture in less than 13 min with peak efficiencies in the range of 78,500-84,200 N/m. Under these conditions the analytes were negatively charged and their effective electrophoretic mobilities played a role in the separation. The analysis of different pharmaceutical preparations containing anti-inflammatory drugs, e.g. drops and tablets, is also presented after a very simple sample pretreatment.  相似文献   

15.
A rapid capillary electrochromatographic (CEC) method for the analysis of vitamin E in vegetable oils is reported. Vitamin E consists of a group of eight isomers, tocopherols (TOHs) and tocotrienols. The separation of four TOHs (alpha-, gamma-, delta-TOH), alpha-tocopherol acetate (alpha-TOH-Ac), and an antioxidant compound, butylated hydroxytoluene (BHT) used to prevent TOH autoxidation, was optimized. The CEC experiments were carried out in a 75 microm inner diameter (ID) fused-silica capillary, partially packed with 3 microm C(18 )stationary phase (33 cm total length, 8.4 cm and 7 cm effective and packed lengths, respectively). The optimum mobile phase was a polar organic phase composed of a mixture of methanol-acetonitrile in the ratio 50/50 v/v containing 0.01% ammonium acetate, applying a voltage and temperature set at -25 kV and 20 degrees C, respectively. The tocopherols and the BHT were successfully separated within 2.5 min using the short-end injection method. Under these experimental conditions, repeatability of retention time and peak area, analyte detection and quantitation limits, linearity, precision, and accuracy were studied. The CEC method was applied to determine the content of TOHs in different commercially available oils of virgin olive, hazelnut, sunflower, and soybean. The extraction of vitamin E isomers from oil samples was achieved using methanol and a methanol-isopropanol mixture.  相似文献   

16.
Enantiomeric separation of chiral pharmaceuticals is carried out in aqueous and non-aqueous packed capillary electrochromatography (CEC) using a teicoplanin chiral stationary phase (CSP). Capillaries were slurry packed with 5 microm 100-A porous silica particles modified with teicoplanin and initially evaluated using a non-aqueous polar organic mode system suitability test for the separation of metoprolol enantiomers (Rs = 2.3 and 53000 plates m(-1)). A number of pharmaceutical drugs were subsequently screened with enantioselectivity obtained for 25 racemic solutes including examples of neutral, acidic and basic molecules such as coumachlor (Rs = 3.0 and 86000 plates m(-1)) and alprenolol (Rs = 3.3 and 135000 plates m(-1)) in reversed-phase and polar organic mode, respectively. A statistical experimental design was used to investigate the effects of non-aqueous polar organic mobile phase parameters on the CEC electroosmotic flow, resolution and peak efficiency for two model solutes. Results primarily indicated that higher efficiency and resolution values could be attained at higher methanol contents which is similar to findings obtained on this phase in liquid chromatography.  相似文献   

17.
The goal of this study was to develop a method for the determination of nine phthalic acid esters in extra virgin olive oils using low-pressure gas chromatography-triple-quadrupole mass spectrometry. Sample preparation was simple, environmental friendly, and rapid inasmuch that it involved only dilution (< 1 mL of hexane). The low-pressure gas chromatography analyses were performed by using a 5 m wide-bore column. The limit of quantification for the phthalates ranged from 0.06 to 1.14 mg kg−1. Both intra- and interday precisions were measured, with coefficient of variation values ranging from 0.2% to 11.7%. The trueness of the method was measured by evaluating accuracy at the initial stage of the work and after 2 months, with values ranging between −8.7% and 12.1%. Moreover, blind accuracy was comprised between −11.6% and 14.2%. The method involves the use of simplified instrumentation and reduced analysis times (nearly two times faster) compared to a previously published comprehensive two-dimensional gas chromatography-triple-quadrupole mass spectrometry method, leading to a reduction of energy and helium consumption. The approaches were compared in analytical terms and for the environmental impact. In total, 23 olive oil samples were analyzed, with at least one phthalate detected in all but one sample.  相似文献   

18.
This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol–gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 μA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases.  相似文献   

19.
The information content of visible spectra has been evaluated, by means of some selected chemometrical techniques, for its ability to trace the geographical origin of extra virgin olive oils coming from several Mediterranean regions. Special attention was paid to extra virgin olive oil produced in West Liguria, a North Italy region which leans over the Mediterranean Sea and borders France. The peculiar organoleptic features of this "niche product" deserved the protected designation of origin "Riviera Ligure-Riviera dei fiori". Unfortunately, this expensive oil is often submitted to profitable adulterations, commonly involving addition of other cheaper Mediterranean oils. Using suitable transforms, such as profiles and derivatives, the visible spectra of extra virgin olive oils showed a very important discriminant power in that regards the geographical characterization of the studied samples. In particular, the developed class models for West Liguria oils have 100% sensitivity and specificity. Moreover, even if this paper is focused on West Liguria oil, it is important to emphasize that a similar study, involving a so widespread and timesaving technique, could be analogously developed for all the other Mediterranean regions taken into account and it could be used in other olive oil characterization problems.  相似文献   

20.
Ballus CA  Meinhart AD  Bruns RE  Godoy HT 《Talanta》2011,83(4):1181-1187
Characterization of phenolic compounds in olive oil has not been achieved as yet, owing to the complexities of their chemical structures and analytical matrix. The aim of this work is to optimize and validate a method for simultaneous separation and quantification of 13 phenolic compounds from extra-virgin olive oil: tyrosol, hydroxytyrosol, oleuropein glycoside, ferrulic acid, p-coumaric acid, cinnamic acid, p-hydroxybenzoic acid, gallic acid, caffeic acid, luteolin, apigenin, vanillic acid and 3,4-dihydroxybenzoic acid. A statistical central composite design, response surface analysis and the simultaneous optimization method of Derringer and Suich were used to separate all the peaks. These multivariate procedures were efficient in determining the optimal separation condition, using five peak-pair resolutions and runtime as responses. The optimized method employed a fused-silica capillary of 50 μm i.d. × 60 cm effective length with extended light path, 50 mmol L−1 boric acid electrolyte, 10.2 pH, 25 °C, injection of 50 mbar for 25 s with application of reverse voltage (−30 kV for 5 s) before setting the running voltage (+30 kV) with detection at 210 nm and a run time of 12 min. Peak resolutions are found to be very sensitive to pH values outside the 10.15-10.25 range but acceptable electropherograms can be obtained for a wide range of boric acid concentrations within this pH interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号