首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
惯性平台系统温度过高和剧烈变化是影响惯性导航系统导航精度的重要因素。为提升惯性平台系统的散热能力,提出了基于微型槽和充氦气的改进散热方法,并对散热效果进行分析。以某平台系统结构为对象,根据惯性平台系统传热机理,分析了当前惯性平台散热能力较差的原因。针对微型槽增大面积、填充氦气等散热方法开展数值仿真分析,并通过缩比样件的散热实验进行验证。实验结果表明,在强迫对流的基础上将两种方法结合使用,可使平台温度较改进前降低9.7℃,有效证明了两种散热方法的可行性及散热效果,为后续惯性平台系统的热设计提供指导。  相似文献   

2.
惯性平台台体的动态特性直接决定着惯性仪表的工作精度和可靠性,模态分析是研究机械系统动态特性的主要方法之一。在概述了实验模态分析理论的基础上,建立了某型号平台台体结构的实验模型,对其进行了实验模态分析。通过对实验结果与有限元计算结果比较,验证了有限元结果较为准确;同时针对结构存在的问题,通过灵敏度分析对结构的动力修改提出了改进意见。  相似文献   

3.
航空遥感用惯性稳定平台动力学耦合分析   总被引:2,自引:0,他引:2  
航空遥感用惯性稳定平台承载重量较大的成像载荷,系统相对复杂,耦合明显。根据航空遥感用三轴惯性稳定平台的结构特点,应用矢量叠加原理推导了平台环架运动学方程,建立了欧拉动力学模型,并分析了基座运动情况下各环架间的动力学耦合误差。仿真结果表明,基座对平台环架耦合较大,环架交叉耦合相对较小,且在外界干扰下基座及环架间的耦合加强。研究结果为稳定平台控制系统设计提供了依据。  相似文献   

4.
针对航空遥感三轴惯性稳定平台隔离高频线振动的要求,在振动环境分析的基础上,以振动传递率为评价指标,对周期性干扰下惯性稳定平台的一次和二次隔振系统动力学模型进行了Matlab仿真及振动特性分析,进而对某轻小型惯性稳定平台的隔振系统进行了设计,最后为验证隔振系统效果,对惯性稳定平台进行了振动测试实验。实验结果表明:惯性稳定平台在受到30~500 Hz的外界干扰时能够平稳工作,且指向精度保持在0.2°以内,表明隔振系统设计合理有效。  相似文献   

5.
惯性平台轴承预紧力及其刚度的分析计算   总被引:2,自引:1,他引:2  
本文对惯性平台中框架支承的角接触球轴承的预紧力、刚度和摩擦力矩进行了分析,并结合实际轴承给出了初步的计算。  相似文献   

6.
惯性定位系统的卡尔曼滤波器设计   总被引:6,自引:2,他引:6  
本文讨论陆用惯性定位系统零速修正卡尔曼滤波器的设计问题。关于这个问题,自从20世纪80年代初期以来,已有不少文章发表。本文与文献中的各种方法相比较,不仅考虑了陀螺漂移的常值分量,而且考虑了斜坡分量,因此,更能适应于零速修正时间间隔较长的情况。文中,首先推导了陆用惯性系统的增广误差状态模型。其次,利用三个相邻时刻的零速误差构造了观测向量模型。第三,在前述基础上设计了离散的线性卡尔曼滤波器;特别地,对初始状态向量及其协方差矩阵的估计,提出了具体的实施方法。最后,给出了在北京郊区实地跑车试验结果的误差曲线。跑车实验所用系统由导航误差3.7km/h的航空惯性导航系统改装。实践表明:利用本文的卡尔曼滤波器进行零速修正,可提高惯性系统定位精度两个数量级以上。  相似文献   

7.
讨论了惯性平台稳定回路自抗扰控制的设计问题。平台稳定系统要求响应速度快,抗干扰能力强,稳态精度高等优良特性。但这些性能指标之间是有矛盾的。采用经典的控制方法综合设计校正时,往往取折中的方案,很难兼顾所有的性能。仿真结果表明,用自抗扰控制方法设计控制规律,其稳定回路跟踪能力和抗干扰能力得到了较大的改善,提高了惯性稳定平台的可靠性和精度。  相似文献   

8.
惯性平台自标定的标定方案设计目前多是依靠经验人为设计,而没有比较系统的标定方案设计方法,为解决此问题,提出了一种基于D-最优理论的惯性平台自标定方案设计方法。首先分析给出了包含36个待估计参数的平台系统误差模型;然后以陀螺仪和加速度计的输出模型为回归模型,将惯性平台自标定看作一个广义的多元回归问题,以D-最优理论为优化准则,提出了并行设计和串行设计两种标定方案设计思路。将得到的优化方案与传统的十六位置标定方案进行了仿真对比分析,仿真结果表明:优化方案的陀螺仪误差系数、加速度计误差系数和加速度计安装误差系数标定相对误差都在1%以下,与传统十六位置标定方案的标定精度相当;但优化方案的陀螺仪安装误差标定相对误差在5%左右,远远优于传统十六位置标定方案25%的相对误差;而且优化方案的标定位置更少,能够减少标定时间,验证了标定方案设计思路的正确性。  相似文献   

9.
数字式惯性平台稳定回路的离散变结构控制   总被引:2,自引:2,他引:0  
为了实际实现具有良好跟踪精度和抗干扰能力的惯性平台稳定回路,建立了平台伺服电机的离散时间模型,设计了由单片机和高速DSP组成的数字控制系统,与惯性平台组成了基于采样数据的平台稳定控制回路,研究了离散变结构控制趋近律的选取方法,采用改进趋近律设计了离散变结构控制律,提出了一种数字式平台稳定回路的离散变结构控制方法,通过实物实验得出了平台伺服电机转轴摩擦力矩模型系数的估计值,并将其引入到控制系统中.仿真实验结果表明,该回路系统对于摩擦力矩和系统参数不确定性具有一定的抗干扰性能,对于阶跃干扰力矩输入具有良好的动态特性,且静态力矩刚度提高到1.2×104 N.m/rad,系统对于斜坡和加速度输入信号实现了平稳跟踪,跟踪误差最大值分别为0.0056 rad和0.0597 rad.  相似文献   

10.
某惯性设备随动系统刚度偏低,控制精度较差,同时在使用过程中常会由于系统的个性差异导致系统稳定性变差,直接影响系统的使用。为此对控制系统进行了数学建模,用Matlab对系统进行了仿真和幅频/相频特性的分析,对系统进行了改进设计,大大提高了系统刚度和控制精度;并通过大量的仿真、实验和数据分析,对实际工作中由于系统个性差异引起的系统稳定性变差、稳定时间变长等问题提出了切实可行的解决方法。试验结果表明:系统的精度由原来的1.2°提高到0.3°,超调量由原来的50%降低到30%,满足总体性能要求。  相似文献   

11.
本文阐述了惯性平台温控系统温度控制精度和平台内温度场分布的均衡性对惯性导航系统精度的影响,着重介绍了惯性平台温控系统精度的控制技术,并且对惯性平台稳态加热功率进行了工程计算。  相似文献   

12.
惯性平台中成对角接触球轴承的应用与研究   总被引:1,自引:0,他引:1  
惯性平台是通过轴承将台体组件、内框组件、外框组件联系起来的,是在具有振动、冲击、摇摆的环境下工作的。为了保证平台系统的精度,对轴承的参数指标要求比较高。文中通过分析和计算提出了方法和建议,为以后的轴承改进和设计奠定了基础。  相似文献   

13.
利用卡氏定理,对惯性平台框架部件的刚度进行简化计算。通过微机编程获得数据,为结构设计初期合理选取结构参数提供参考。  相似文献   

14.
惯性平台误差快速自标定技术   总被引:12,自引:1,他引:12  
误差标定及补偿是提高惯性系统实用精度的重要手段。惯性平台借助自身框架的转动及锁定功能可以实现自主误差标定,为载体的机动性和制导/导航精确性创造了条件。但标定的完善性与快速性之间存在矛盾。本针对一种三轴平台设计了一个十六位置误差标定及自主对准一体化方案,可以分离出总计42项误差,其中包括自主确定方位。占用时间约70分钟,在标定完善性与快速性之间达到了较合理地折衷,在实用中取得了良好的效果。  相似文献   

15.
根据重力无源导航的基本要求,建立了速率方位惯性平台/计程仪/重力匹配组合导航系统的工作模式,给出了该组合导航系统的误差状态方程、测量方程和扩展Kalman方程.由于重力传感器是在运动载体上测量重力的,其输出包含当地重力大小和厄特弗斯效应,所以在该组合导航系统Kalman滤波器中考虑了厄特弗斯效应.采用matlab/simulink工具对该组合导航系统在分辨率为的数字重力异常图上进行了计算机仿真研究.仿真结果表明:该组合导航系统长时间定位误差小于导航系统目标误差的(RMS),在重力异常显著变化地区其定位误差将更小.  相似文献   

16.
本文研究平台惯性导航系统初始自对准技术,实际上是采用任意双位置平台方位锁定。文中首先介绍自对准原理,然后进行详细的理论分析,最后以某型号平台惯性导航系统为应用,介绍数字精调平回路、平台方位锁定回路的设计及初始自对准调试情况。对应于系统随机漂移为0.05°/hr的指标,平台方位自对准精度达到17.42角分(1σ),且重复性较好,自对准调试结果得到了光学传递对准的检验。随后进行了车载导航实验,导航精度达到4.55nm/hr(1σ)。  相似文献   

17.
平台式惯导系统的快速初始对准方法的研究   总被引:6,自引:1,他引:6  
提出并设计了把自抗扰控制技术用于平台式惯导系统静基座下的一种快速对准方法、并进行了计算机仿真。结果表明:该方法使对准过程时间大大缩短,具有超调低、算法简单及稳态精度较高等特点,是一种应用在实际惯导系统中的理想初始对准方案。  相似文献   

18.
扩展裂纹尖端的塑性热耗散与温度场   总被引:2,自引:0,他引:2  
材料的不可逆变形功以热的形式耗散,形成温度场,本文考虑Ⅰ型裂纹尖端过程区塑性变形功的热耗散,视裂尖塑性过程区为内热源,通过合理地构造一个热源密度函数,结合裂尖塑性区的近似模型,给出了裂纹定常扩展过程中的裂尖温度场。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号