首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
For an n×n complex matrix A with ind(A) = r; let AD and Aπ = IAAD be respectively the Drazin inverse and the eigenprojection corresponding to the eigenvalue 0 of A: For an n×n complex singular matrix B with ind(B) = s, it is said to be a stable perturbation of A, if I–(BπAπ)2 is nonsingular, equivalently, if the matrix B satisfies the condition \(\mathcal{R}(B^s)\cap\mathcal{N}(A^r)=\left\{0\right\}\) and \(\mathcal{N}(B^s)\cap\mathcal{R}(A^r)=\left\{0\right\}\), introduced by Castro-González, Robles, and Vélez-Cerrada. In this paper, we call B an acute perturbation of A with respect to the Drazin inverse if the spectral radius ρ(BπAπ) < 1: We present a perturbation analysis and give suffcient and necessary conditions for a perturbation of a square matrix being acute with respect to the matrix Drazin inverse. Also, we generalize our perturbation analysis to oblique projectors. In our analysis, the spectral radius, instead of the usual spectral norm, is used. Our results include the previous results on the Drazin inverse and the group inverse as special cases and are consistent with the previous work on the spectral projections and the Moore-Penrose inverse.  相似文献   

3.
Let E ? ?n be a closed set of Hausdorff dimension α. For m > n, let{B1, …, Bk} be n × (m ? n) matrices. We prove that if the system of matrices Bj is non-degenerate in a suitable sense, α is sufficiently close to n, and if E supports a probability measure obeying appropriate dimensionality and Fourier decay conditions, then for a range of m depending on n and k, the set E contains a translate of a non-trivial k-point configuration {B1y, …, Bky}. As a consequence, we are able to establish existence of certain geometric configurations in Salem sets (such as parallelograms in ?n and isosceles right triangles in ?2). This can be viewed as a multidimensional analogue of the result of [25] on 3-term arithmetic progressions in subsets of ?.  相似文献   

4.
Let b ? (n) denote the number of ?-regular partitions of n. In 2012, using the theory of modular forms, Furcy and Penniston presented several infinite families of congruences modulo 3 for some values of ?. In particular, they showed that for α, n ≥ 0, b 25 (32α+3 n+2 · 32α+2-1) ≡ 0 (mod 3). Most recently, congruences modulo powers of 5 for c5(n) was proved by Wang, where c N (n) counts the number of bipartitions (λ12) of n such that each part of λ2 is divisible by N. In this paper, we prove some interesting Ramanujan-type congruences modulo powers of 5 for b25(n), B25(n), c25(n) and modulo powers of 7 for c49(n). For example, we prove that for j ≥ 1, \({c_{25}}\left( {{5^{2j}}n + \frac{{11 \cdot {5^{2j}} + 13}}{{12}}} \right) \equiv 0\) (mod 5 j+1), \({c_{49}}\left( {{7^{2j}}n + \frac{{11 \cdot {7^{_{2j}}} + 25}}{{12}}} \right) \equiv 0\) (mod 7 j+1) and b 25 (32α+3 · n+2 · 32α+2-1) ≡ 0 (mod 3 · 52j-1).  相似文献   

5.
Let \(\mathcal {L}\) be a \(\mathcal {J}\)-subspace lattice on a Banach space X over the real or complex field \(\mathbb {F}\) with dimX ≥ 3 and let n ≥ 2 be an integer. Suppose that dimK ≠ 2 for every \(K\in \mathcal {J}{(\mathcal L)}\) and \(L: \text {Alg}\, \mathcal {L}\rightarrow \text {Alg}\,\mathcal {L}\) is a linear map. It is shown that L satisfies \({\sum }_{i=1}^{n}p_{n} (A_{1}, \ldots , A_{i-1}, L(A_{i}), A_{i+1}, \ldots , A_{n})=0\) whenever p n (A 1,A 2,…,A n ) = 0 for \(A_{1},A_{2},\ldots ,A_{n}\in \text {Alg}\,\mathcal {L}\) if and only if for each \(K\in \mathcal {J}(\mathcal {L})\), there exists a bounded linear operator \(T_{K}\in \mathcal {B}(K)\), a scalar λ K and a linear functional \(h_{K}: \text {Alg}\,\mathcal {L}\rightarrow \mathbb {F}\) such that L(A)x = (T K A ? A T K + λ K A + h K (A)I)x for all xK and all \(A\in \text {Alg}\,\mathcal {L}\). Based on this result, a complete characterization of linear n-Lie derivations on \(\text {Alg}\,\mathcal {L}\) is obtained.  相似文献   

6.
Let M n (n ? 3) be a complete Riemannian manifold with sec M ? 1, and let \(M_i^{n_i }\) (i = 1, 2) be two complete totally geodesic submanifolds in M. We prove that if n1 + n2 = n ? 2 and if the distance |M1M2| ? π/2, then M i is isometric to \(\mathbb{S}^{n_i } /\mathbb{Z}_h\), \(\mathbb{C}P^{n_i /2}\), or \(\mathbb{C}P^{n_i /2} /\mathbb{Z}_2 \) with the canonical metric when n i > 0; and thus, M is isometric to S n /? h , ?Pn/2, or ?Pn/2/?2 except possibly when n = 3 and \(M_1 (or M_2 )\mathop \cong \limits^{iso} \mathbb{S}^1 /\mathbb{Z}_h \) with h ? 2 or n = 4 and \(M_1 (or M_2 )\mathop \cong \limits^{iso} \mathbb{R}P^2 \).  相似文献   

7.
For ?1≤B<A≤1, let \(\mathcal {S}^{*}(A,B)\) denote the class of normalized analytic functions \(f(z)= z+{\sum }_{n=2}^{\infty }a_{n} z^{n}\) in |z|<1 which satisfy the subordination relation z f (z)/f(z)?(1 + A z)/(1 + B z) and Σ?(A,B) be the corresponding class of meromorphic functions in |z|>1. For \(f\in \mathcal {S}^{*}(A,B)\) and λ>0, we shall estimate the absolute value of the Taylor coefficients a n (?λ,f) of the analytic function (f(z)/z)?λ . Using this we shall determine the coefficient estimate for inverses of functions in the classes \(\mathcal {S}^{*}(A,B)\) and Σ?(A,B).  相似文献   

8.
We consider the partial-sum process \( {S}_n(t)={\sum}_{k=0}^{\left\lfloor nt\right\rfloor }{X}_k \) of linear processes \( {X}_n={\sum}_{i=0}^{\infty }{c}_i{\upxi}_{n-i} \) with independent identically distributed innovations {ξ i } belonging to the domain of attraction of α-stable law (0 < α ≤ 2). If |c k |?=?k ?,?k?∈???,?γ?> max(1, 1/α), and \( {\sum}_{k=0}^{\infty}\kern0.5em ck=0 \) (the case of negative memory for the stationary sequence {X n }), then it is known that the normalizing sequence of S n (1) can grow as n 1/α?γ+1 or remain bounded if the signs of the coefficients are constant or alternate, respectively. It is of interest to know whether it is possible, given ? ∈ (0, 1/α ? γ + 1), to change the signs of c k so that the rate of growth of the normalizing sequence would be n ? . In this paper, we give the positive answer: we propose a way of choosing the signs and investigate the finite-dimensional convergence of appropriately normalized S n (t) to linear fractional Lévy motion.  相似文献   

9.
A nondegenerate m-pair (A, Ξ) in an n-dimensional projective space ?P n consists of an m-plane A and an (n ? m ? 1)-plane Ξ in ?P n , which do not intersect. The set \(\mathfrak{N}_m^n \) of all nondegenerate m-pairs ?P n is a 2(n ? m)(n ? m ? 1)-dimensional, real-complex manifold. The manifold \(\mathfrak{N}_m^n \) is the homogeneous space \(\mathfrak{N}_m^n = {{GL(n + 1,\mathbb{R})} \mathord{\left/ {\vphantom {{GL(n + 1,\mathbb{R})} {GL(m + 1,\mathbb{R})}}} \right. \kern-\nulldelimiterspace} {GL(m + 1,\mathbb{R})}} \times GL(n - m,\mathbb{R})\) equipped with an internal Kähler structure of hyperbolic type. Therefore, the manifold \(\mathfrak{N}_m^n \) is a hyperbolic analogue of the complex Grassmanian ?G m,n = U(n+1)/U(m+1) × U(n?m). In particular, the manifold of 0-pairs \(\mathfrak{N}_m^n {{GL(n + 1,\mathbb{R})} \mathord{\left/ {\vphantom {{GL(n + 1,\mathbb{R})} {GL(1,\mathbb{R})}}} \right. \kern-\nulldelimiterspace} {GL(1,\mathbb{R})}} \times GL(n,\mathbb{R})\) is a hyperbolic analogue of the complex projective space ?P n = U(n+1)/U(1) × U(n). Similarly to ?P n , the manifold \(\mathfrak{N}_m^n \) is a Kähler manifold of constant nonzero holomorphic sectional curvature (relative to a hyperbolic metrics). In this sense, \(\mathfrak{N}_0^n \) is a hyperbolic spatial form. It was proved in [6] that the manifold of 0-pairs \(\mathfrak{N}_0^n \) is globally symplectomorphic to the total space T*?P n of the cotangent bundle over the projective space ?P n . A generalization of this result (see [7]) is as follows: the manifold of nondegenerate m-pairs \(\mathfrak{N}_m^n \) is globally symplectomorphic to the total space T*?G m,n of the cotangent bundle over the Grassman manifold ?G m,n of m-dimensional subspaces of the space ?P n .In this paper, we study the canonical Kähler structure on \(\mathfrak{N}_m^n \). We describe two types of submanifolds in \(\mathfrak{N}_m^n \), which are natural hyperbolic spatial forms holomorphically isometric to manifolds of 0-pairs in ?P m +1 and in ?P n?m , respectively. We prove that for any point of the manifold \(\mathfrak{N}_m^n \), there exist a 2(n ? m)-parameter family of 2(m + 1)-dimensional hyperbolic spatial forms of first type and a 2(m + 1)-parameter family of 2(n ? m)-dimensional hyperbolic spatial forms of second type passing through this point. We also prove that natural hyperbolic spatial forms of first type on \(\mathfrak{N}_m^n \) are in bijective correspondence with points of the manifold \(\mathfrak{N}_{m + 1}^n \) and natural hyperbolic spatial forms of second type on \(\mathfrak{N}_m^n \) are in bijective correspondence with points of the manifolds \(\mathfrak{N}_{m + 1}^n \).  相似文献   

10.
It is shown that if P m α,β (x) (α, β > ?1, m = 0, 1, 2, …) are the classical Jaboci polynomials, then the system of polynomials of two variables {Ψ mn α,β (x, y)} m,n=0 r = {P m α,β (x)P n α,β (y)} m, n=0 r (r = m + nN ? 1) is an orthogonal system on the set Ω N×N = ?ub;(x i , y i ) i,j=0 N , where x i and y i are the zeros of the Jacobi polynomial P n α,β (x). Given an arbitrary continuous function f(x, y) on the square [?1, 1]2, we construct the discrete partial Fourier-Jacobi sums of the rectangular type S m, n, N α,β (f; x, y) by the orthogonal system introduced above. We prove that the order of the Lebesgue constants ∥S m, n, N α,β ∥ of the discrete sums S m, n, N α,β (f; x, y) for ?1/2 < α, β < 1/2, m + nN ? 1 is O((mn) q + 1/2), where q = max?ub;α,β?ub;. As a consequence of this result, several approximate properties of the discrete sums S m, n, N α,β (f; x, y) are considered.  相似文献   

11.
Let {φ n (α,β) (z)} n=0 be a system of Jacobi polynomials orthonormal on the circle |z| = 1 with respect to the weight (1 ? cos τ)α+1/2(1 + cos τ)β+1/2 (α, β > ?1), and let \(\psi _n^{\left( {\alpha ,\beta } \right)*} \left( z \right): = z^n \overline {\psi _n^{\left( {\alpha ,\beta } \right)} \left( {{1 \mathord{\left/ {\vphantom {1 {\bar z}}} \right. \kern-\nulldelimiterspace} {\bar z}}} \right)}\)). We establish relations between the polynomial φ n (α,?1/2) (z) and the nth (C, α ? 1/2)-mean of the Maclaurin series for the function (1 ? z)?α?3/2 and also between the polynomial φ n (α,?1/2)* (z) and the nth (C, α + 1/2)-mean of the Maclaurin series for the function (1 ? z)?α?1/2. We use these relations to derive an asymptotic formula for φ n (α,?1/2) (z); the formula is uniform inside the disk |z| < 1. It follows that φ n (α,?1/2) (z) ≠ 0 in the disk |z| ≤ ρ for fixed φ ∈ (0, 1) and α > ?1 if n is sufficiently large.  相似文献   

12.
Motivated by a question of Sárközy, we study the gaps in the product sequence B = A · A = {b 1 < b 2 < …} of all products a i a j with a i , a j A when A has upper Banach density α > 0. We prove that there are infinitely many gaps b n+1 ? b n ? α ?3 and that for t ≥ 2 there are infinitely many t-gaps b n+t ? b n ? t 2 α ?4. Furthermore, we prove that these estimates are best possible.We also discuss a related question about the cardinality of the quotient set A/A = {a i /a j , a i , a j A} when A ? {1, …, N} and |A| = αN.  相似文献   

13.
The system of equations \(\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u\), where A(·) ∈ ?n × n, B(·) ∈ ?n × m, S(·) ∈ Rn × m, is considered. The elements of the matrices A(·), B(·), S(·) are uniformly bounded and are functionals of an arbitrary nature. It is assumed that there exist k elements \({\alpha _{{i_i}{j_l}}}\left( \cdot \right)\left( {l \in \overline {1,k} } \right)\) of fixed sign above the main diagonal of the matrix A(·), and each of them is the only significant element in its row and column. The other elements above the main diagonal are sufficiently small. It is assumed that m = n ?k, and the elements βij(·) of the matrix B(·) possess the property \(\left| {{\beta _{{i_s}s}}\left( \cdot \right)} \right| = {\beta _0} > 0\;at\;{i_s}\; \in \;\overline {1,n} \backslash \left\{ {{i_1}, \ldots ,{i_k}} \right\}\). The other elements of the matrix B(·) are zero. The positive definite matrix H = {hij} of the following form is constructed. The main diagonal is occupied by the positive numbers hii = hi, \({h_{{i_l}}}_{{j_l}}\, = \,{h_{{j_l}{i_l}}}\, = \, - 0.5\sqrt {{h_{{i_l}}}_{{j_l}}} \,\operatorname{sgn} \,{\alpha _{{i_l}}}_{{j_l}}\left( \cdot \right)\). The other elements of the matrix H are zero. The analysis of the derivative of the Lyapunov function V(x) = x*H–1x yields hi\(\left( {i \in \overline {1,n} } \right)\) and λi ≤ 0 \(\left( {i \in \overline {1,n} } \right)\) such that for S(·) = H?1ΛB(·), Λ = diag(λ1, ..., λn), the system of the considered equations becomes globally exponentially stable. The control is robust with respect to the elements of the matrix A(·).  相似文献   

14.
We consider a fractional Adams method for solving the nonlinear fractional differential equation \(\,^{C}_{0}D^{\alpha }_{t} y(t) = f(t, y(t)), \, \alpha >0\), equipped with the initial conditions \(y^{(k)} (0) = y_{0}^{(k)}, k=0, 1, \dots , \lceil \alpha \rceil -1\). Here, α may be an arbitrary positive number and ?α? denotes the smallest integer no less than α and the differential operator is the Caputo derivative. Under the assumption \(\,^{C}_{0}D^{\alpha }_{t} y \in C^{2}[0, T]\), Diethelm et al. (Numer. Algor. 36, 31–52, 2004) introduced a fractional Adams method with the uniform meshes t n = T(n/N),n = 0,1,2,…,N and proved that this method has the optimal convergence order uniformly in t n , that is O(N ?2) if α > 1 and O(N ?1?α ) if α ≤ 1. They also showed that if \(\,^{C}_{0}D^{\alpha }_{t} y(t) \notin C^{2}[0, T]\), the optimal convergence order of this method cannot be obtained with the uniform meshes. However, it is well-known that for yC m [0,T] for some \(m \in \mathbb {N}\) and 0 < α < m, the Caputo fractional derivative \(\,^{C}_{0}D^{\alpha }_{t} y(t) \) takes the form “\(\,^{C}_{0}D^{\alpha }_{t} y(t) = c t^{\lceil \alpha \rceil -\alpha } + \text {smoother terms}\)” (Diethelm et al. Numer. Algor. 36, 31–52, 2004), which implies that \(\,^{C}_{0}D^{\alpha }_{t} y \) behaves as t ?α??α which is not in C 2[0,T]. By using the graded meshes t n = T(n/N) r ,n = 0,1,2,…,N with some suitable r > 1, we show that the optimal convergence order of this method can be recovered uniformly in t n even if \(\,^{C}_{0}D^{\alpha }_{t} y\) behaves as t σ ,0 < σ < 1. Numerical examples are given to show that the numerical results are consistent with the theoretical results.  相似文献   

15.
Given \({\mathbb Z}\)-graded rings A and B, we ask when the graded module categories gr-A and gr-B are equivalent. Using \({\mathbb Z}\)-algebras, we relate the Morita-type results of Áhn-Márki and del Río to the twisting systems introduced by Zhang, and prove, for example: Theorem If A and B are \({\mathbb Z}\) -graded rings, then: (1) A is isomorphic to a Zhang twist of B if and only if the \({\mathbb Z}\) -algebras \(\overline{A} = \bigoplus_{i,j \in {\mathbb Z}} A_{j-i}\) and \(\overline{B} = \bigoplus_{i,j \in {\mathbb Z}} B_{j-i}\) are isomorphic. (2) If A and B are connected graded with A 1?≠?0, then gr-A???gr-?B if and only if \(\overline{A}\) and \( \overline{B}\) are isomorphic. This simplifies and extends Zhang’s results.  相似文献   

16.
In this article, we study the equation
$\frac{\partial }{\partial t}u(x,t)=c^{2}\Diamond _{B}^{k}u(x,t)$
with the initial condition u(x,0)=f(x) for x∈? n + . The operator ? B k is named to be Bessel diamond operator iterated k-times and is defined by
$\Diamond _{B}^{k}=\bigl[(B_{x_{1}}+B_{x_{2}}+\cdots +B_{x_{p}})^{2}-(B_{x_{p+1}}+\cdots +B_{x_{p+q}})^{2}\bigr]^{k},$
where k is a positive integer, p+q=n, \(B_{x_{i}}=\frac{\partial ^{2}}{\partial x_{i}^{2}}+\frac{2v_{i}}{x_{i}}\frac{\partial }{\partial x_{i}},\) 2v i =2α i +1,\(\;\alpha _{i}>-\frac{1}{2}\), x i >0, i=1,2,…,n, and n is the dimension of the ? n + , u(x,t) is an unknown function of the form (x,t)=(x 1,…,x n ,t)∈? n + ×(0,∞), f(x) is a given generalized function and c is a positive constant (see Levitan, Usp. Mat. 6(2(42)):102–143, 1951; Y?ld?r?m, Ph.D. Thesis, 1995; Y?ld?r?m and Sar?kaya, J. Inst. Math. Comput. Sci. 14(3):217–224, 2001; Y?ld?r?m, et al., Proc. Indian Acad. Sci. (Math. Sci.) 114(4):375–387, 2004; Sar?kaya, Ph.D. Thesis, 2007; Sar?kaya and Y?ld?r?m, Nonlinear Anal. 68:430–442, 2008, and Appl. Math. Comput. 189:910–917, 2007). We obtain the solution of such equation, which is related to the spectrum and the kernel, which is so called Bessel diamond heat kernel. Moreover, such Bessel diamond heat kernel has interesting properties and also related to the kernel of an extension of the heat equation.
  相似文献   

17.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

18.
Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) = [[Φ(A), Φ(B)]_*, Φ(C)]_*for all A, B, C ∈ A if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.  相似文献   

19.
Consider two F q -subspaces A and B of a finite field, of the same size, and let A ?1 denote the set of inverses of the nonzero elements of A. The author proved that A ?1 can only be contained in A if either A is a subfield, or A is the set of trace zero elements in a quadratic extension of a field. Csajbók refined this to the following quantitative statement: if A ?1 ? B, then the bound |A ?1B| ≤ 2|B|/q ? 2 holds. He also gave examples showing that his bound is sharp for |B| ≤ q 3. Our main result is a proof of the stronger bound |A ?1B| ≤ |B|/q · (1 + O d (q ?1/2)), for |B| = q d with d > 3. We also classify all examples with |B| ≤ q 3 which attain equality or near-equality in Csajbók’s bound.  相似文献   

20.
We conjecture that every infinite group G can be partitioned into countably many cells \(G = \bigcup\limits_{n \in \omega } {A_n }\) such that cov(A n A n ?1 ) = |G| for each nω Here cov(A) = min{|X|: X} ? G, G = X A}. We confirm this conjecture for each group of regular cardinality and for some groups (in particular, Abelian) of an arbitrary cardinality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号