共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
考虑纵向数据部分线性模型,针对纵向数据个体内的相关性特点,通过引入估计的作业协方差矩阵,构造了模型中未知参数的三种经验对数似然比统计量.在适当条件下,证明了所提出的统计量依分布收敛于χ~2分布,所得结果可以构造未知参数的置信域.最后通过模拟研究对所提方法进行了说明. 相似文献
3.
4.
5.
6.
7.
在平稳相协误差下,本文采用分组经验似然方法构造部分线性模型回归系数的置信区域,证明了分组经验似然比统计量渐近卡方分布,该结果可用于构造回归系数的经验似然置信域.进一步地,我们还在有限样本情形做了数值模拟研究. 相似文献
8.
考虑响应变量随机缺失下的变系数部分线性模型的估计问题,利用构造基于借补值的辅助随机向量,给出了参数分量的借补经验对数似然比函数.证明了其渐近服从标准卡方分布,进而给出了参数分量的置信域. 相似文献
9.
核实数据下响应变量缺失的线性EV模型经验似然推断 总被引:4,自引:0,他引:4
考虑响应变量随机缺失而协变量带有误差的线性模型,借助于核实数据和借补方法,构造了回归系数的两种经验似然比,证明了所提出的估计的经验对数似然比渐近于一个自由度为1的独立χ2变量的加权和;而经调整后所得的调整经验对数似然比渐近于自由度为p的χ2分布,该结果可以用来构造未知参数的置信域.此外,我们也构造了响应均值的调整经验对数似然比统计量,并证明了所提出的统计量渐近于x2分布,可用此结果构造响应均值的置信域.通过模拟研究比较了置信域的精度及其平均区间长度. 相似文献
10.
11.
核实数据下非线性EV模型中经验似然降维推断 总被引:2,自引:2,他引:2
本文研究了响应变量有误差的非线性模型.应用半参数降维技术构造未知参数的被估计经验似然及调整的经验似然,证明了所提出的被估计的经验对数似然与其调整的经验对数似然分别渐近于独立卡方变量加权和的分布与标准卡方分布,所得结果可用来构造未知参数的置信域. 相似文献
12.
本文研究了具有随机右删失随机变量分位数的置信域的构造.利用经验似然和截尾值估算相结合的方法,给出了分位数的对数经验似然比统计量,在较少的条件下证明了该统计量的极限分布为自由度为1的x~2分布.使得完全数据下的分位数的经验似然推断方法应用到非完全数据中. 相似文献
13.
EMPIRICAL LIKELIHOOD APPROACH FOR LONGITUDINAL DATA WITH MISSING VALUES AND TIME-DEPENDENT COVARIATES 下载免费PDF全文
Missing data and time-dependent covariates often arise simultaneously in longitudinal studies, and directly applying classical approaches may result in a loss of efficiency and biased estimates. To deal with this problem, we propose weighted corrected estimating equations under the missing at random mechanism, followed by developing a shrinkage empirical likelihood estimation approach for the parameters of interest when time-dependent covariates are present. Such procedure improves efficiency over generalized estimation equations approach with working independent assumption, via combining the independent estimating equations and the extracted additional information from the estimating equations that are excluded by the independence assumption. The contribution from the remaining estimating equations is weighted according to the likelihood of each equation being a consistent estimating equation and the information it carries. We show that the estimators are asymptotically normally distributed and the empirical likelihood ratio statistic and its profile counterpart follow central chi-square distributions asymptotically when evaluated at the true parameter. The practical performance of our approach is demonstrated through numerical simulations and data analysis. 相似文献
14.
将逆概率加权法和推广的逆概率加权法用于缺失数据下估计方程经验似然推断中,得到两种参数估计的渐近性质.同时可以得到两种方法所对应的估计方程是无偏的,相应的经验似然统计量都渐近卡方分布,从而避免的调整经验似然.数值模拟也进一步显示了两种方法的优势. 相似文献
15.
研究高维线性模型中的经验似然推断.当协变量的维数随样本量增加时,常规的经验似然推断失效.在适当的正则条件下,对修正的经验似然比统计量给出了渐近分布理论. 相似文献
16.
QinYongsong JiangBo LiYufang 《高校应用数学学报(英文版)》2005,20(2):205-212
In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors. It is shown that the blockwise empirical likelihood is a good way to deal with dependent samples. 相似文献
17.
X1,…,Xm;Y1,…,Yn为独立随机样本,X,X1,…,Xm同分布,X-F,F(0)=0,Y,Y1,…,Ynm同分布,Y的分布函数为G(y)=1/μ∫yω(t,β)dF(t),y≥0,其中,β∈R,μ=∫0^∞ω(t,β)dF(t),0〈μ,ω(t,β)〈∞,F,μ和β均未知,ω(t,β)的形式已知,设θ为一待估参数,且存在一已知函数ψ(X,θ)满足EFψ(X,θ)=0,本文利用经验似然法给出 相似文献
18.
TESTING FOR VARYING DISPERSION OF LONGITUDINAL BINOMIAL DATA IN NONLINEAR LOGISTIC MODELS WITH RANDOM EFFECTS 总被引:1,自引:0,他引:1
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)). 相似文献
19.
研究β-ARCH模型的经验似然估计及相应似然比统计量的渐近性质,证得了相合性和极限分布. 相似文献
20.
Empirical likelihood-based inference in a partially linear model for longitudinal data 总被引:1,自引:0,他引:1
A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed. 相似文献