首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Single crystals of disilver(I) monofluorophosphate(V), Ag2PO3F (1), were obtained by slow evaporation of a diluted aqueous Ag2PO3F solution. Compound 1 adopts a new structure type and crystallizes in the monoclinic space group C2/c with eight formula units and lattice parameters of a = 9.2456(8) A, b = 5.5854(5) A, c = 14.7840(13) A, and beta = 90.178(2) degrees. The crystal structure of 1 [R(F2 > 2sigma(F2) = 0.0268, wR(F2 all) = 0.0665] is composed of three crystallographically independent Ag+ cations and PO3F2- anions as single building units. The oxygen environment around each of the Ag+ cations is different, with one Ag+ in distorted octahedral (d(Ag-O) = 2.553 A), one in nearly rectangular (d(Ag-O) = 2.445 A), and one in distorted tetrahedral (d(Ag-O) = 2.399 A) coordination. Additional Ag-F contacts to more remote F atoms located at distances >2.80 A augment the coordination polyhedra for the two latter Ag+ cations. The monofluorophosphate anion deviates slightly from C3v symmetry and exhibits the characteristic differences in bond lengths, with a mean of 1.510 A for the P-O bonds and one considerably longer P-F bond of 1.575(2) A. Compound 1 was further characterized by vibrational spectroscopy (Raman and IR) and solid-state 19F, 31P, and 109Ag MAS NMR spectroscopy. The value for the isotropic one-bond P-F coupling constant in 1 is 1JPF = -1045 Hz. Thermal analysis (TG, DSC) revealed a reversible phase transition at 308 degrees C, which is very close to the decomposition range of 1. Under release of POF3, Ag4P2O7 and Ag3PO4 are the thermal decomposition products at temperatures above 450 degrees C.  相似文献   

2.
It is geometrically feasible to insert metal-metal-bonded M(4) tetrahedra and M(6) octahedra into the tetrahedral and octahedral holes, respectively, of the fcc C(60) lattice. The electronic structure of the hypothetical tetrahedral variants C(60)(M(4))(2), M = Rh, Co, is analyzed with approximate molecular orbital methods and band structure calculations. These compounds feature M-M and M-C(60) bonding and a variable degree of electron transfer to or from C(60). The C(60)(M(4))(2) phases should be metallic, but we have no way of predicting if they will be superconducting. A number of discrete molecular tetrahedral cluster compounds which serve as models for the solid state materials are analyzed. There is a clear indication that tetranuclear and even mononuclear Rh, Ir, and Co arene complexes should be relatively unstable.  相似文献   

3.
1 INTRODUCTION Most materials with nonlinear optical pro- perties and electro-optical applications are either borates or phosphates. LBO(LiB3O5), KTP(KtiO- PO4), BBO(b-BaB2O4) and KDP(KH2PO4) are well- known commercially and extensively used for different optical elements. In recent years, the compounds combined both borate and phosphate groups have been synthesized and structurally characterized with quite different anionic partial structures. In particular, the use of hydrot…  相似文献   

4.
The compound K2Cu3US5 was obtained by the reaction of K2S, UCl4, CuCl, and S at 973 K. K2Cu3US5 crystallizes in a new structure type in space group Cmcm of the orthorhombic system in a cell of dimensions a = 3.9374(6) A, b = 13.813(2) A, c = 17.500(3) A, and V = 951.8(2) A3 at 153 K. The structure comprises (2)(infinity)[UCu3S52-] slabs separated by K+ cations. The slabs are built from CuS4 tetrahedra and US6 octahedra. Their connectivity differs from other known octahedral/tetrahedral packing patterns. In the temperature range 130-300 K the compound exhibits Curie-Weiss magnetic behavior with mu(eff) = 2.45(8) mu(B). This result together with both the bond distances and bond valence calculations and the absence of a Cu2+ ESR signal support the formulation of the above compound as K+2Cu+3U5+S2-5.  相似文献   

5.
The new mercury vanadium phosphate hydrate Hg(4)(-)(x)()O(1)(-)(y)()(VO)(PO(4))(2).H(2)O has been synthesized under hydrothermal conditions. X-ray investigations led to orthorhombic symmetry, space group P2(1)2(1)2(1) (No. 19), a = 6.3632(2) A, b = 12.4155(5) A, c = 14.2292(6) A, Z = 4. The crystal structure was solved and refined from single-crystal diffractometer data to residuals R[F(2) > 2sigmaF(2)] = 0.039, R(w)(F(2)) = 0.055. The VPO framework consists of infinite one-dimensional [VO(PO(4))(2)]( infinity ) chains with corner-connected VO(6) octahedra and PO(4) tetrahedra. The chains run along the [100] direction and are held together by the unprecedented tetrahedral cationic units [Hg(4)(-)(x)()O(1)(-)(y)()](4+). Presence of Hg-Hg bonding contacts is proved from theoretical calculations.  相似文献   

6.
Ab initio calculations predict the existence of the compounds Ng(-C[triple bond]CH)4 and Ng(-C[triple bond]CH)6, where Ng=Xe or Kr. Presently known organic noble gas compounds have a coordination number of two at most. The Ng(-C[triple bond]CH)(4) molecules have D(4h) symmetry, and Ng(-C[triple bond]CH)(6) molecules have O(h) symmetry. The bonding in all these compounds is partly ionic and partly covalent, with significant contributions from both types of bonding. The relatively high vibrational frequencies and the substantial Ng-(C[triple bond]CH) binding energy in these species indicate that these compounds should be fairly stable, at least in cryogenic conditions. These compounds could be a very interesting addition to the range of known organic noble gas compounds. Suggestions are made on possible approaches to their preparation.  相似文献   

7.
Yellowish elongated crystals of the two new compounds Pb6LaO7Br (1) and Pb6LaO7Cl (2) have been obtained by the method of solid-state reactions. Both structures can be described in the terms of oxo-centered tetrahedra. The structures of 1 and 2 consist of [O7Pb6La]+ chains that are built from oxocentered OA4 (A = Pb, La) tetrahedra. The halogen ions connect the chains through weak Pb-X bonds. An arrangement of eight OA4 tetrahedra that all share the same central La atom forms a [O8Pb10La3]13+ cluster. The clusters are linked into chains, and additional OPb4 tetrahedra are attached to the chains. Incorporation of Cl atoms instead of Br atoms into the structure causes a lowering of the symmetry from Cmcm to C2/m.  相似文献   

8.
The new borates Fe(II)(6)B(22)O(39)·H(2)O (colourless) and Co(II)(6)B(22)O(39)·H(2)O (dichroic: red/bluish) were synthesised under the high-pressure/high-temperature conditions of 6 GPa and 880 °C (Fe)/950 °C (Co) in a Walker-type multi-anvil apparatus. The compounds crystallise in the orthorhombic space group Pmn2(1) (Z=2) with the lattice parameters a=771.9(2), b=823.4(2), c=1768.0(4) pm, V=1.1237(4) nm(3), R(1)=0.0476, wR(2)=0.0902 (all data) for Fe(6)B(22)O(39)·H(2)O and a=770.1(2), b=817.6(2), c=1746.9(4) pm, V=1.0999(4) nm(3), R(1)=0.0513, wR(2)=0.0939 (all data) for Co(6)B(22)O(39)·H(2)O. The new structure type of M(6)B(22)O(39)·H(2)O (M=Fe, Co) is built up from corner-sharing BO(4) tetrahedra and BO(3) groups, the latter being distorted and close to BO(4) tetrahedra if additional oxygen atoms of the neighbouring BO(4) tetrahedra are considered in the coordination sphere. This situation can be regarded as an intermediate state in the formation of edge-sharing tetrahedra. The structure consists of corrugated multiple layers interconnected by BO(3)/BO(4) groups to form Z-shaped channels. Inside these channels, iron and cobalt show octahedral (M1, M3, M4, M5) and strongly distorted tetrahedral (M2, M6) coordination by oxygen atoms. Co(II)(6)B(22)O(39)·H(2)O is dichroic and the low symmetry of the chromophore [Co(II)O(4)] is reflected by the polarised absorption spectra (Δ(t)=4650 cm(-1), B=878 cm(-1)).  相似文献   

9.
The title compound, tetrasodium cobalt aluminium hexaarsenate, Na4Co7−xAl2/3x(AsO4)6 (x = 1.37), is isostructural with K4Ni7(AsO4)6; however, in its crystal structure, some of the Co2+ ions are substituted by Al3+ in a fully occupied octahedral site (site symmetry 2/m) and a partially occupied tetrahedral site (site symmetry 2). A third octahedral site is fully occupied by Co2+ ions only. One of the two independent tetrahedral As atoms and two of its attached O atoms reside on a mirror plane, as do two of the three independent Na+ cations, all of which are present at half‐occupancy. The proposed structural model based on a careful investigation of the crystal data is supported by charge‐distribution (CHARDI) analysis and bond‐valence‐sum (BVS) calculations. The correlation between the X‐ray refinement and the validation results is discussed.  相似文献   

10.
Several new hydrated rare earth vanadates and rare earth oxy-vanadates have been synthesized using hydrothermal techniques and characterized using single crystal and powder X-ray diffraction and infrared and UV-vis absorption spectroscopies. The hydrated rare earth vanadates adopt the space group P2(1)/m with general formula A(3)VO(5)(OH)(3) (A = Y (1), Dy (2), or La (3)) and contain anionic distorted square pyramidal [VO(5)](-6) units and AO(7) and AO(8) polyhedra. The oxy-vanadates with the general formula A(2)O(VO(4)) (A = Y (4), Dy (5; 6), or Yb (7)) form two polymorphs in either P2(1)/c or C2/c space groups and contain anionic tetrahedral [VO(4)](-4) units and nonvanadium bonded O(2-) anions in distorted [OA(4)] tetrahedra. In all cases, the vanadium ion is in the tetravalent oxidation state, and its original source was the trace V(4+) impurities in YVO(4). The observed vanadyl and equatorial vanadium-oxygen bond lengths about the square pyramid in compounds 1-3 and the tetrahedral vanadium coordination found in compounds 4-7 are unusual for V(4+). The electronic and vibrational spectra are also reported and correlated with the appropriate coordination environment.  相似文献   

11.
The structures of the tetranuclear osmium carbonyl derivatives Os4(CO)n (n = 16, 15, 14, 13, 12) have been investigated using the density functional theory method MPW1PW91 with the SDD effective core potential basis set, found to be effective in previous work for the study of Os3(CO)12. The Os4 clusters in the lowest energy structures for Os4(CO)16, Os4(CO)15, and Os4(CO)14 are found to be rhombi, butterflies, and tetrahedra with four, five, and six Os-Os bonds, respectively, in accord with structures determined by X-ray diffraction as well as the 18-electron rule. The fluxionality of tetrahedral Os4(CO)14, suggested by experimental work of Johnston, Einstein, and Pomeroy, is confirmed by our DFT studies, which find four Os4(CO)14 structures within 1.5 kcal mol-1 of each other with similar tetrahedral Os4 frameworks but with different arrangements of bridging and semibridging carbonyl groups. The lowest energy structures for the more unsaturated Os4(CO)13 and Os4(CO)12 are also based on Os4 tetrahedra but with shorter Os-Os edge lengths than in Os4(CO)14 suggesting delocalized multiple bonding in the more highly unsaturated systems. Thus the global minimum for Os4(CO)12 is predicted to have tetrahedral symmetry, with all terminal carbonyl groups analogous to the experimentally known structure of (mu3-H)4Re3(CO)12, but without the face-bridging hydrogen atoms.  相似文献   

12.
The perovskite-like compounds ACu3Ru4O12 (A=Na, Ca, Sr, La, Nd) are studied by means of density functional theory based electronic structure calculations using the augmented spherical wave (ASW) method. The electronic properties are strongly influenced by covalent-type bonding between transition metal d and oxygen p states. The characteristic tilting of the RuO6 octahedra arises mainly from the Cu–O bonding, allowing for optimal bond lengths between these two atoms. Our results provide a deeper understanding of octahedral tilting as a universal mechanism, applicable to a large variety of multinary compounds.  相似文献   

13.
Wang X  Andrews L 《Inorganic chemistry》2005,44(20):7189-7193
Laser-ablated Hf atoms react with H2O2 and with H2 + O2 mixtures in solid argon to form the Hf(OH)2 and Hf(OH)4 molecules, which are identified from the effect of isotopic substitution on the matrix infrared spectra. Electronic structure calculations at the MP2 level varying all bond lengths and angles converge to nearly linear and tetrahedral molecules, respectively, and predict frequencies for these new product molecules and mixed isotopic substituted molecules of lower symmetry that are in excellent agreement with observed values, which confirms the identification of these hafnium hydroxide molecules. This work provides the first evidence for a metal tetrahydroxide molecule and shows that the metal atom reaction with H2O2 in excess argon can be used to form pure metal tetrahydroxide molecules, which are not stable in the solid state.  相似文献   

14.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

15.
The temperature dependence of the X-ray crystal structure and powder EPR spectrum of [(HC(Ph(2)PO)(3))(2)Cu](ClO(4))(2).2H(2)O is reported, and the structure at room temperature confirms that reported previously. Below approximately 100 K, the data imply a geometry with near elongated tetragonal symmetry for the [(HC(Ph(2)PO)(3))(2)Cu](2+) complex, but on warming the two higher Cu-O bond lengths and g-values progressively converge, and by 340 K the bond lengths correspond to a compressed tetragonal geometry. The data may be interpreted satisfactorily assuming an equilibrium among the energy levels of a Cu-O(6) polyhedron subjected to Jahn-Teller vibronic coupling and a lattice strain. However, agreement with the experiment is obtained only if the orthorhombic component of the lattice strain decreases to a negligible value as the temperature approaches 340 K.  相似文献   

16.
The FT-MIR/FT-FIR and NIR-FT-Raman spectra of orthorhombic alpha-Zn3(PO4)2 x 4H2O (alpha-hopeite) and monoclinic Zn2Fe(PO4)2 x 4H2O (phosphophyllite), including deuterated samples, have been measured in the polycrystalline state at room temperature and below. The distribution of vibrational levels was related to the results of complete unit-cell group analyses. The number of uncoupled OD stretching modes of alpha-hopeite (isotopically dilute samples) strongly exceeds that expected from the number of hydrogen positions of the structure reported. In contrast, unequivocal assignment of the four hydrogen bonds of phosphophyllite has been performed. The distortion of the phosphate tetrahedra, as revealed from both site group and unit-cell group splitting of the PO stretching modes, is found to be almost equal in both compounds, in accordance with the identical tetrahedral linkage scheme.  相似文献   

17.
[C6N2H18]2[Mo5O15(HPO4)2]·H2O的水热合成与结构表征   总被引:6,自引:0,他引:6  
通过水热法合成了一个新化合物[C6N2H18]2[Mo5O15(HPO4)2]·H2O,并通过IR光谱、ICP、元素分析、差热与热重分析和X射线单晶衍射分析等手段进行了表征.结果表明,晶体属三方晶系,P3(2)21空间群,a=1.1231(1)nm,c=2.2802(5)nm,V=2.4911(7)nm3,Dx=2.835Mg/m3,Z=6,最后的一致性因子R=0.0227,wR=0.0675.阴离子中Mo5O15构成一环状结构,2个HPO4一个连在环的下方,一个连在环的上方,形成类似于“飞碟”状的结构,阳离子为2个质子化的四甲基乙二胺.  相似文献   

18.
The four title compounds, namely sodium gallium germanate, NaGaGe2O6, sodium manganese vanadate germanate, NaMnV0.1Ge1.9O6, sodium scandium germanate, NaScGe2O6, and sodium indium germanate, NaInGe2O6, adopt the high‐temperature structure of the pyroxene‐type chain germanates, with monoclinic symmetry and space group C2/c. The lattice parameters, the individual and average bond lengths involving M1, and the distortion parameters scale well with the ionic radius of the M1 cation. NaGaGe2O6 has more distorted M1 sites and more extended tetrahedral chains than NaInGe2O6, in which a high degree of kinking is required to maintain the connection between the octahedral and tetrahedral building units of the pyroxene structure. An exceptional case is NaMnGe2O6, in which the strong Jahn–Teller effect of Mn3+ results in more distorted octahedral sites than expected according to linear extrapolation from the other NaM3+Ge2O6 pyroxenes. In contrast with the literature, minor incorporations of V5+ in the tetrahedral site and a corresponding reduction of Mn3+ to Mn2+ in the octahedral sites in the present sample lower the Jahn–Teller distortion and stabilize the Mn‐bearing pyroxene, even allowing its synthesis at ambient pressure.  相似文献   

19.
New diorganotin(IV) derivative of 4-methyl-1-piperidinecarbodithioic acid (4-MePCDTA) have been synthesized by the reaction of dibutyltin(Acac)2 and ligand acid in a 1: 1 molar ratio in anhydrous chloroform at room temperature. The newly synthesized complex has been characterized by elemental, IR, and multinuclear NMR (1H and 13C). The diorganotin(IV) derivative is assessed to adopt distorted octahedral geometry in the solid state, while tetrahedral geometry is exhibited in a solution state. The modeled structure of the reported complex shows severely distorted octahedral geometry around tin. The axial tin carbon bond lengths are 2.15 Å. The Sn-O bond lengths for coordinated Acac in the equatorial plane are 2.37 and 2.23 Å, respectively. The complex was also tested for antimicrobial activity against different bacterial and fungal strains, artemia salina cytotoxicity, and plant phytotoxicity. The screening results show that the complex exhibits high antibacterial, antifungal, and artemia salina cytotoxicity and have a potential to be used as drug. Low phytotoxic activity shows that the reported compound can be used as agrochemical. The structure-activity relationship demonstrates that the compound having four-coordinated geometry in the solution state is more toxic.  相似文献   

20.
We have calculated the vibrational frequencies of clusters of atoms from the first principles by using the density-functional theory in the local density approximation (LDA). We are also able to calculate the electronic binding energy for all of the clusters of atoms from the optimized structure. We have made clusters of BanOm (n, m=1-6) and have determined the bond lengths, vibrational frequencies as well as intensities in each case. We find that the peroxide cluster BaO2 occurs with the O-O vibrational frequency of 836.3 cm(-1). We also find that a glass network occurs in the material which explains the vibrational frequency of 67 cm(-1). The calculated values agree with those measured from the Raman spectra of barium peroxide and Ba-B-oxide glass. We have calculated the vibrational frequencies of BaO4, GeO4 and SiO4 each in tetrahedral configuration and find that the vibrational frequencies in these systems depend on the inverse square root of the atomic mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号