首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new method for describing the rheological properties of reactive polymer melts, which was presented in an earlier paper, is developed in more detail. In particular, a detailed derivation of the equation of a first-order rheometrical flow surface is given and a procedure for determining parameters and functions occurring in this equation is proposed. The experimental verification of the presented approach was carried out using our data for polyamide-6.Notation E Dimensionless reduced viscosity, eq. (34) - E 0 Newtonian asymptote of the function (36) - E power-law asymptote of the function (36) - E = 1 the value ofE at = 1 - k degradation reaction rate constant, s–1 - k 1 rate constant of function (t), eq. (26), s–1 - k 2 rate constant of function (t), eq. (29), s–1 - K(t) residence-time-dependent consistency factor, eq. (22) - M w weight-average molecular weight - M x x-th moment of the molecular weight distribution - R gas constant - S x M x /M w - t residence time in molten state, s - t j thej-th value oft, s - T temperature, K - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xd9vqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaceWFZo% Gbaiaaaaa!3B4E!\[\dot \gamma \] shear rate, s–1 - i thei-th value of , s–1 - r =1 the value of at = 1, s–1 - * reduced shear rate, eq. (44), s–1 - dimensionless reduced shear rate, eq. (35) - viscosity, Pa · s - shear-rate and residence-time dependent viscosity, Pa · s - zero-shear-rate degradation curve - degradation curve at - t0 (t) zero-residence-time flow curve - Newtonian asymptote of the RFS - instantaneous flow curve - power-law asymptote of the RFS - 0,0 zero-shear-rate and zero-residence-time viscosity, Pa · s - E=1 value of viscosity atE=1, Pa · s - * reduced viscosity, eq. (43), Pa · s - zero-residence-time rheological time constant, s - density, kg/m3 - (t),(t) residence time functions  相似文献   

2.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

3.
We study isolated singularities of the quasilinear equation in an open set of N , where 1 < p N, p -1 q < N(p — 1)/ (N -p). We prove that, for any positive solution, if a singularity at the origin is not removable then either or u(x)/(x) any positive constant as x 0 where is the fundamental solution of the p-harmonic equation: . Global positive solutions are also classified.  相似文献   

4.
Zusammenfassung Der Einfluß der Rotation auf das Temperaturprofil und die Wärmeübergangszahl einer turbulenten Rohrströmung im Bereich des thermischen Einlaufs wird theoretisch untersucht und mit Meßwerten verglichen. Es wird angenommen, daß das Geschwindigkeitsprofil voll ausgebildet ist. Die Rotation hat aufgrund der radial ansteigenden Zentrifugalkräfte einen ausgeprägten Einfluß auf die Unterdrückung der turbulenten Bewegung. Dadurch verschlechtert sich die Wärmeübertragung mit steigender Rotations-Reynoldszahl und die thermische Einlauflänge nimmt beträchtlich zu.
Heat transfer in an axially rotating pipe in the thermal entrance region. Part 1: Effect of rotation on turbulent pipe flow
The effects of rotation on the temperature distribution and the heat transfer to a fluid flowing inside a tube are examined by analysis in the thermal entrance region. The theoretical results are compared with experimental findings. The flow is assumed to have a fully developed velocity profile. Rotation was found to have a very marked influence on the suppression of the turbulent motion because of radially growing centrifugal forces. Therefore, a remarkable decrease in heat transfer with increasing rotational Reynolds number can be observed. The thermal entrance length increases remarkably with growing rotational Reynolds number.

Formelzeichen a Temperaturleitzahl - C n , ,C 1,C 3 Konstanten - c p spezifische Wärme bei konstantem Druck - D Rohrdurchmesser - E Funktion nach Gl. (30) - H n Eigenfunktionen - l hydrodynamischer Mischungsweg - l q thermischer Mischungsweg - Massenstrom - N=Re /Re Reynoldszahlenverhältnis - Nu Nusseltzahl - Nu Nusseltzahl für die thermisch voll ausgebildete Strömung - Pr Prandtlzahl - Pr t turbulente Prandtlzahl - Wärmestromdichte - Re * Schubspannungsreynoldszahl - R n Eigenfunktionen - Durchfluß-Reynoldszahl - Re v =D/ Rotations-Reynoldszahl - Ri Richardsonzahl - R Rohrradius - r Koordinate in radialer Richtung - dimensionslose Koordinate in radialer Richtung - T Temperatur - T Temperaturschwankung - T b bulk temperature - mittlere Axialgeschwindigkeit - v Geschwindigkeit - v Geschwindigkeitsschwankung - turbulenter Wärmestrom - dimensionsloser Wandabstand - =1/6 Konstante - Integrationsvariable - Integrationsvariable - , 1, 2, dimensionslose Temperaturen - Wärmeleitzahl - n Eigenwerte - kinematische Viskosität - Dichte - tangentiale Koordinate - , Hilfsfunktionen Indizes m in der Rohrmitte - r radial - w an der Rohrwand - z axial - 0 am Rohreintritt - 0 ohne Rotation - tangential  相似文献   

5.
The mixed convection flow in a vertical duct is analysed under the assumption that , the ratio of the duct width to the length over which the wall is heated, is small. It is assumed that a fully developed Poiseuille flow has already been set up in the duct before heat from the wall causes this to be changed by the action of the buoyancy forces, as measured by a buoyancy parameter . An analytical solution is derived for the case when the Reynolds numberRe, based on the duct width, is of 0 (1). This is extended to the case whenRe is 0 (–1) by numerical integrations of the governing equations for a range of values of representing both aiding and opposing flows. The limiting cases, || 1 andR=Re of 0 (1), andR and both large, with of 0 (R 1/3) are considered further. Finally, the free convection limit, large with R of 0 (1), is discussed.
Mischkonvektion in engen senkrechten Rohren
Zusammenfassung Mischkonvektion in einem senkrechten Rohr wird unter der Voraussetzung untersucht, daß das Verhältnis der Rohrbreite zur Länge, über welche die Wand beheizt wird, klein ist. Es wird angenommen, daß sich bereits eine voll entwickelte Poiseuille-Strömung in dem Rohr eingestellt hat, bevor Antriebskräfte, gemessen mit dem Auftriebsparameter , aufgrund der Wandbeheizung die Strömung verändern. Es wird eine analytische Lösung für den Fall erhalten, daß die mit der Rohrbreite als charakteristische Länge gebildete Reynolds-ZahlRe konstant ist. Dies wird mittels einer numerischen Integration der wichtigsten Gleichungen auf den FallRe =f (–1) sowohl für Gleich- als auch für Gegenstrom ausgedehnt. Weiterhin werden die beiden Grenzfälle betrachtet, wenn || 1 undR=Re konstant ist, sowieR und beide groß mit proportionalR 1/3. Schließlich wird der Grenzfall der freien Konvektion, großes mit konstantem R, diskutiert.

Nomenclature g acceleration due to gravity - Gr Grashof number - G modified Grashof number - h duct width - l length of the heated section of the duct wall - p pressure - Pr Prandtl number - Q flow rate through the duct - Q 0 heat transfer on the wally=0 - Q 1 heat transfer on the wally=1 - Re Reynolds number - R modified Reynolds number - T temperature of the fluid - T 0 ambient temperature - T applied temperature difference - u, velocity component in thex-direction - v, velocity component in they-direction - x, co-ordinate measuring distance along the duct - y, co-ordinate measuring distance across the duct - buoyancy parameter - 0 modified buoyancy parameter, 0=R –1/3 - coefficient of thermal expansion - ratio of duct width to heated length, =h/l - (non-dimensional) temperature - w applied temperature on the wally=0 - kinematic viscosity - density of the fluid - 0 shear stress on the wally=0 - 1 shear stress on the wally=1 - stream function  相似文献   

6.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

7.
Measurements on seven rigid PVC compounds were carried out with a slit rheometer working in combination with an injection moulding machine. Plastication of the compounds occurred in the screw of the plastication unit, which also forced the melt through the die with a controlled forward velocity. The rectangular slit had a length of 90 mm and a widthB of 20 mm. The heightH could be varied between 0.8 and 3.3 mm. Pressures and temperatures were recorded at several positions in and before the die. Measurements were carried out at shear rates from 10 to 2000 s–1.When the reduced volume output was plotted against the wall shear stress W , only four compounds showed master curves independent ofH, which is indicative of wall adhesion. In the other cases this plot did not produce such a master curve, but the plot of the mean velocity against W was independent ofH (slip curve). This indicated that slip flow prevailed with a slip velocityv G When, in the case of wall slip, the smooth inner surfaces of the die were replaced by surfaces with grooves perpendicular to the direction of flow, slip flow was prevented and the flow curves were shifted to much higher values of Wc Above a critical value of the wall shear stress ( Wc ) at which slip flow began, the output became nearly independent of W . From the measurements made below Wc a vs. relation for the shear flow could be derived, which was used to calculate the superimposed shear flow . Exact values of the slip velocity were then given by . Wall slip only occurred for compounds with a high shear viscosity, which corresponds to a high molecular weight (K-value).Dedicated to Professor H. Janeschitz-Kriegl on the occasion of his 60th birthday.  相似文献   

8.
A theoretical study is made of the flow behavior of thin Newtonian liquid films being squeezed between two flat plates. Solutions to the problem are obtained by using a numerical method, which is found to be stable for all Reynolds numbers, aspect ratios, and grid sizes tested. Particular emphasis is placed on including in the analysis the inertial terms in the Navier-Stokes equations.Comparison of results from the numerical calculation with those from Ishizawa's perturbation solution is made. For the conditions considered here, it is found that the perturbation series is divergent, and that in general one must use a numerical technique to solve this problem.Nomenclature a half of the distance, or gap, between the two plates - a 0 the value of a at time t=0 - adot da/dt - ä d2 a/dt 2 - d3 a/dt 3 - a i components of a contravariant acceleration vector - f unknown function of z 0 and t defined in (6) - f i function defined in (9) f 1=r 0 g(z 0, t) f 2= 0 f 3=f(z 0, t) - F force applied to the plates - g unknown function of z 0 and t defined in (6) - g g/z 0 - h grid dimension in the z 0 direction (see Fig. 5) - Christoffel symbol - i, j, k, l indices - k grid dimension in the t direction (see Fig. 5) - r radial coordinate direction defined in Fig. 1 - r 0 radial convected coordinate - R radius of the circular plates - t time - v r fluid velocity in the r direction - v z fluid velocity in the z direction - v fluid velocity in the direction - x i cylindrical coordinate x 1=r x2= x3=z - z vertical coordinate direction defined in Fig. 1 - z 0 vertical convected coordinate - tangential coordinate direction - 0 tangential convected coordinate - viscosity - kinematic viscosity, / - i convected coordinate 1=r0 2=0 3=z0 - density  相似文献   

9.
Summary The present work deals with the case of a two-dimensional slider bearing with a rigid pad and an elastic bearing. Fluid viscosity is assumed to be only a pressure function. We determined the bearing deformation, the pressure distribution and the load capacity at different values of the inclination angle of the slider, with a numerical integration of the system consisting of the elasticity and Reynolds equations. The results show that, with an iso-viscous fluid, bearing elasticity causes a load capacity decrease. Instead bearing elasticity together with the variation of fluid viscosity due to pressure causes a load capacity greater than that of the iso-viscous case (=0).
Sommario Il presente lavoro studia il problema della coppia prismatica lubrificata con pattino rigido di allungamento infinito e cuscinetto deformabile; si suppone che la viscosità del fluido sia funzione della sola pressione. Il sistema di equazioni, costituito dall'equazione di Reynolds e dall'equazione dell'elasticità, è stato risolto numericamente, determinando la deformazione del cuscinetto, andamento della pressione e la capacità di carico per diversi valori dell'inclinazione del pattino. I risultati dimostrano che, con fluido isoviscoso, la deformabilità del cuscinetto determina una riduzione della capacità di carico. Se si considera, invece, effetto combinato dell'elasticità del cuscinetto e della variazione della viscosità del fluido, la capacità di carico risulta maggiore di quella che si ottiene con fluido isoviscoso (=0).

Nomenclature /L - /L - x/L - x/L - - ¯C CZ/h 1 - E elasticity modulus - h film thickness - H elastic deformation of the bearing - h 1 minimum film thickness - h 2 inlet thickness - inclination of the pad - h Z/h 1 - HZ/h 1 - L pad length - viscosity - 0 viscosity with no over-pressure - p over pressure - p P ec-P rc where:ec=elastic caserc=rigid case - P h 1 2 /60VL - h 2/h 1=1+L/h 1 - FV bearing velocity - W load capacity per unit width - Wh 2 1 /60 VL 2 - Z E h 3 1 /12 0 VL 2 A first version of this paper was presented at the 7th National AIMETA congress, held at Trieste, October 2–5, 1984. This work was supported by C.N.R.  相似文献   

10.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

11.
An experimental investigation was undertaken to study the apparent thickening behavior of dilute polystyrene solutions in extensional flow. Among the parameters investigated were molecular weight, molecular weight distribution, concentration, thermodynamic solvent quality, and solvent viscosity. Apparent relative viscosity was measured as a function of wall shear rate for solutions flowing from a reservoir through a 0.1 mm I.D. tube. As increased, slight shear thinning behavior was observed up until a critical wall shear rate was exceeded, whereupon either a large increase in or small-scale thickening was observed depending on the particular solution under study. As molecular weight or concentration increased, decreased and, the jump in above , increased. increased as thermodynamic solvent quality improved. These results have been interpreted in terms of the polymer chains undergoing a coil-stretch transition at . The observation of a drop-off in at high (above ) was shown to be associated with inertial effects and not with chain fracture due to high extensional rates.  相似文献   

12.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

13.
An analytical solution is obtained for the stationary temperature profile in a polymeric melt flowing into a cold cavity, which also takes into account viscous heating effects. The solution is valid for the injection stage of the molding process. Although the analytical solution is only possible after making several (at first sight) rather stringent assumptions, the calculated temperature field turns out to give a fair agreement with a numerical, more realistic approach. Approximate functions were derived for both the dissipation-independent and the dissipation-dependent parts which greatly facilitate the temperature calculations. In particular, a closed-form expression is derived for the position where the maximum temperature occurs and for the thickness of the solidified layer.The expression for the temperature field is a special case of the solution of the diffusion equation with variable coefficients and a source term.Nomenclature a thermal diffusivity [m2/s] - c specific heat [J/kg K] - D channel half-height [m] - L channel length [m] - m 1/ - P pressure [Pa] - T temperature [°C] - T W wall temperature [°C] - T i injection temperature [°C] - T A Br independent part of T - T B Br dependent part of T - T core asymptotic temperature - v z() axial velocity [m/s] - W channel width [m] - x cross-channel direction [m] - z axial coordinate [m] - (x) gamma function - (a, x) incomplete gamma function - M(a, b, x) Kummer function - small parameter - () temperature function - thermal conductivity [W/mK] - viscosity [Pa · s] - 0 consistency index - power-law exponent - density [kg/m] - similarity variable Dimensionless variables Br Brinkman number - Gz Graetz number -   相似文献   

14.
Measurements of the spectral characteristics of the wall pressure fluctuations produced by a turbulent boundary layer flow over solid sinusoidal surfaces of moderate wave amplitude to wave-length ratios have been obtained. The wave amplitudes were sufficiently small so that the flow remained attatched. The results show that the root mean square pressure level reaches a maximum on the adverse pressure gradient side of the wave at a position somewhat before the trough. Spectral analysis of the pressure fluctuations in narrow frequency bands reveals considerable differences in low and high frequency behavior. At low frequencies, the peak fluctuation amplitude was found at the trough whereas at high frequencies, the peak occurs just after the crest and a minimum is found at the trough. Pressure fluctuations having streamwise correlation lengths on the order of or larger than the wavelength of the surface do not return to their equilibrium (crest) amplitudes as they travel the length of a wave. Pressure fluctuations having streamwise correlation lengths about one order of magnitude less than a wavelength return exactly to their equilibrium amplitudes. Two-point correlation measurements show a decrease in longitudinal coherence on the adverse pressure gradient side of the wave at low frequencies and a considerable increase over a broad frequency range on the positive pressure gradient side. No change is found in the lateral coherence.List of symbols C f skin friction coefficient - C p pressure coefficient - C n Fourier amplitudes of the pressure coefficient - C dp pressure drag coefficient - d pinhole diameter - f frequency - h half the crest to trough distance - h + nondimensional wave amplitude = - k n wavenumber = - k fundamental wavenumber = - l p pressure correlation length - p s mean surface pressure - P ambient pressure - p fluctuating pressure - p 2 mean square pressure - q dynamic head = 1/2 U 2 - R space-time correlation - P Reynolds number based on wavelength = - R Reynolds number based on momentum thickness = - t time - R free stream velocity - U mean streamwise velocity - U e streamwise velocity at the edge of the boundary layer - u * friction velocity = - x streamwise coordinate - y wall-normal coordinate - z spanwise coordinate - + non-dimensional wavelength = *) - phase of the cross-spectral density - * boundary layer displacement thickness - long longitudinal coherency - lat lateral coherency - wavelength of wavy surface - v kinematic viscosity - radian frequency = 2 f - spectral or cross-spectral density - n phase of the Fourier series - density - time delay - w wall shear stress - boundary layer momentum thickness  相似文献   

15.
Certain steady yawed magnetogasdynamic flows, in which the magnetic field is everywhere parallel to the velocity field, are related to certain reduced three-dimensional compressible gas flows having zero magnetic field. Under a restriction, the reduced flows are linked, by certain reciprocal relations, to a four parameter class of plane gas flows. In the instance of constant entropy an approximation method is suggested for obtaining magnetogasdynamic flows from the corresponding plane, irrotational gasdynamic flows and examples are given.

Nomenclature

magnetogasdynamic flow variables H magnetic intensity - q fluid velocity - fluid density - p pressure - s entropy - Q t, H t component of q, H in the x–y plane - w , h component of q, H perpendicular to the x–y plane reduced gasdynamic flow factor of proportionality - q* fluid velocity - * fluid density - p* pressure - Q t * =u*î+v*, w* components of q* - l arbitrary constant - A v Alfvén speed - Q t, , p fluid velocity, density, pressure of the reciprocal gas dynamic flow - L, n, k, arbitrary constants - , velocity potential, stream function - angle made by Q t, Q t * , and V with the x-axis - adiabatic gas constant - a 2=(–1)/2 constant - M Mach number - W constant value of w* - E approximate constant value of g(p) - * modified potential function - modified velocity coordinate - +i - complex potential of the irrotational flow - B arbitrary constant - V incompressible flow velocity - V modified fluid velocity - X p, Y p points on the profile  相似文献   

16.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

17.
Based on the complex viscosity model various steady-state and transient material functions have been completed. The model is investigated in terms of a corotational frame reference. Also, BKZ-type integral constitutive equations have been studied. Some relations between material functions have been derived. C –1 Finger tensor - F[], (F –1[]) Fourier (inverse) transform - rate of deformation tensor in corotating frame - h(I, II) Wagner's damping function - J (x) Bessel function - m parameter inh (I, II) - m(s) memory function - m k, nk integers (powers in complex viscosity model) - P principal value of the integral - parameter in the complex viscosity model - rate of deformation tensor - shear rates - [], [] incomplete gamma function - (a) gamma function - steady-shear viscosity - * complex viscosity - , real and imaginary parts of * - 0 zero shear viscosity - +, 1 + stress growth functions - , 1 - stress relaxation functions - (s) relaxation modulus - 1(s) primary normal-stress coefficient - ø(a, b; z) degenerate hypergeometric function - 1, 2 time constants (parameters of *) - frequency - extra stress tensor  相似文献   

18.
Zusammenfassung Es wurde eine zweidimensionale, aus ebener Wand und Konturwand bestehende Lavaldüse gebaut, um an den Wänden (unterteilt in gut isolierte und einzeln gekühlte Segmente) genaue Wärmeübergangs messungen durchzuführen. Alle Versuchspunkte zeigen bei geringer Streubreite eine eindeutige Abhängigkeit der Stanton-Zahl von einer aus neu entwickelten Temperaturprofilen gewonnenen Differenz aus dimensionslosen Kennzahlen für Dissipation und Druckgradient. Bei gekühlter Grenzschicht und zunehmendem negativen Druckgradienten nimmt in Theorie und Versuch bei geringer Dissipation der Wärmeübergang ab, bei stärkerer Dissipation zu.
Compressible turbulent boundary layer heat transfer with strong favourable pressure gradients (heat transfer in a convergent — Divergent nozzle)
A two-dimensional convergent-divergent nozzle with a plane and a contoured wall was built to perform exact measurements of heat transfer to the walls divided in well insulated single-cooled segments. For all experimental data within a small error-band the Stanton-number definitely depends on a difference of dimensionless numbers for dissipation and pressure gradient found from new developed temperature profiles. Theoretical and experimental results show that in a cooled boundary layer with increasing favourable pressure gradient heat transfer decreases with small dissipation and increases with greater dissipation.

Formelzeichen Wärmeübergangsparameter - cf=w/(·u 2 örtlicher Reibungsbeiwert - cp spezifische Wärmekapazität - d+= u 2 /(cp·Tq) Dissipationsparameter - 1t turbulenter Mischungsweg - m Massenstrom im Windkanal - p Druck - p+= –K/cf 3/2 Druckgradientenparameter - q Wärmestromdichte - r Rückgewinnfaktor - u Geschwindigkeit in Hauptstromrichtung - Schubspannungsgeschwin digkeit - u+=u/u dimensionslose Geschwin digkeit - x Lauflänge an der Wand - y Abstand senkrecht zur Wand - y+=· uy/ dimensionslose y-Koordinate - C Wärmeübergangsbeiwert - Euler-Zahl - Hs Höhe des engsten Quer-Schnitts - K Beschleunigungsparameter - Ma Machzahl - Pr Prandtl-Zahl - Prt turbulente Prandtl-Zahl - R Radius - Reynolds-Zahl - Stanton-Zahl - T absolute Temperatur - Tei Eigentemperatur - Wärmestromdichtetemperatur - T+=T/Tw dimensionslose Temperatur - T*=l/b+ · (1 –T+) dimensionslose Temperatur - ei Wärmeübergangskoeffizient bezogen auf Eigentemperatur - dynamische Zähigkeit - =T – 273,15K Celsius-Temperatur - v kinematische Zähigkeit - Dichte - Schubspannung - Differenz - Wärmeübergangsparameter Indices Freistrom - a Austritt - e Eintritt - k kühlseitige Wand lam laminar - O Gesamt-, Ruhew Wand - x auf Lauflänge x bezogen Auszug aus der vom Fachbereich Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieur genehmigten Dissertation über Wärmeübergang turbulenter kompressibler Grenzschichtströmungen mit starken negativen Druckgradienten (Wärmeübergang in einer Lavaldüse) des Diplom-Ingenieurs W. Winkler. Berichterstatter Prof. Dr.-Ing. U. Grigull und Prof. Dr.-Ing. E. Truckenbrodt. — Die Dissertation wurde am 17.12.1975 bei der Technischen Universität München und am 1.4.1976 durch deren Fachbereich Maschinenwesen angenommen. Tag der Promotion 13.5.1976früher: Lehrstuhl A für Thermodynamik Technische Universität München  相似文献   

19.
Zusammenfassung Mit Hilfe der Mischungswegtheorie wurden Gleichungen zur Berechnung der Geschwindigkeitsprofile und des Druckabfalles bei der turbulenten, abwärtsterichteten Gas/Film-Strömung aufgestellt. Zur Berechnung des Wärmeübergangs wurde die turbulente Temperaturleitfähigkeit aus einem halbempirischen Ansatz bestimmt. Es konnte eine befriedigende Übereinstimmung zwischen den berechneten und gemessenen Nußelt-Zahlen bei der Oberflächenverdampfung erzielt werden. Zur Auslegung von Fallstromverdampfern wurde ein Computerprogramm erstellt. Damit lassen sich Einflußgrößen wie Wandtemperatur, Filmdicke, Verdampfungsrate usw. in Abhängigkeit von der Lauflänge bestimmen.
Flow and heat transfer in surface evaporation and film condensation
Using the mixing length model, equations were established to calculate the velocity profiles and pressure drop in turbulent downward directed gas/film flow. The thermal diffusivity needed for the calculation of heat transfer was determined from a semiempirical model. The calculated Nußelt-numbers agreed very well with experiments. For the design of falling-film evaporators, a computer program was developed, which enables to evaluate wall temperature, film thickness, evaporation rate etc. as a function of flow-path length.

Formelzeichen a Temperaturleitfähigkeit - c spez. Wärmekapazität - d Durchmesser - fm bezogene mittlere turbulente Temperaturleitfähigkeit - Fi /(32/g)1/3) Filmkennzahl - Fr Froude-Zahl - g Fallbeschleunigung - Ka 3/g4 Kapitza-Zahl - L Rohrlänge - l Mischungsweg - m Massenstrom - Nu (2/g)1/3/ Nußelt-Zahl - Nu / Nußelt-Zahl des Filmes - p Druck - Pr /a Prandtl-Zahl - q Wärmestromdichte - R Radius - Re Reynolds-Zahl - Reü Übergangs-Reynolds-Zahl - Rew Schubspannungs-Reynolds-Zahl der Flüssigkeit - r radiale Koordinate - T Temperatur - u Geschwindigkeit - uw Schubspannungsgeschwindigkeit der Flüssigkeit - u Grenzflächengeschwindigkeit - uT Schubspannungsgeschwindigkeit des Gases - y Wandabstand - y* y/ dimensionsloser Wandabstand - z axiale Koordinate Griechische Zeichen Wärmeübergangskoeffizient - Filmdicke - dyn. Viskosität - dimensionslose Temperatur - Wärmeleitfähigkeit - kin. Viskosität - Dichte - Oberflächenspannung - Schubspannung Zusatzzeichen und Indizes G Gas - K Kondensation - s Sättigung - t turbulent - w Wand - wi Welleninstabilität - Phasengrenze - - mittlere Größe  相似文献   

20.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号