首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report direct electrochemistry of the iNOS heme domain in a DDAB film on the surface of a basal plane graphite electrode. Cyclic voltammetry reveals FeIII/II and FeII/I couples at -191 and -1049 mV (vs Ag/AgCl). Imidazole and carbon monoxide in solution shift the FeIII/II potential by +20 and +62 mV, while the addition of dioxygen results in large catalytic waves at the onset of FeIII reduction. Voltammetry at higher scan rates (with pH variations) reveals that the FeIII/II cathodic peak can be resolved into two components, which are attributable to FeIII/II couples of five- and six-coordinate hemes. Digital simulation of our experimental data implicates water dissociation from the heme as a gating mechanism for ET in iNOS.  相似文献   

2.
3.
Analogues of yakuchinones were synthesized as inhibitors of nitric oxide production in lipopolysaccharide-activated macrophage cell line, RAW 264.7 cells. We prepared stronger inhibitors than the original natural molecules, yakuchinones A and B reported from Alpinia oxyphylla. From the limited structural activity relation study of analogues, we concluded that the optimal length of linker between two aryl groups and the presence of enone moiety in the linker were identified as essential for the activity. The IC50 value of the most potent structure was 0.92 microM. The active analogues suppressed the expression of inducible nitric oxide synthase protein and mRNA.  相似文献   

4.
The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF-induced LPL suppression is not the result of NO overproduction.  相似文献   

5.
Russian Chemical Bulletin - The effect of citrulline and ammonium chloride on the nitric oxide formation by peritoneal macrophages and liver tissue cells was studied using ESR spectroscopy. In ex...  相似文献   

6.
7.
Nitric oxide synthase (NOS) has been divided into two major sub-enzymes, i.e. inducible NOS (iNOS) and constitutive NOS (cNOS). Although nitric oxide (NO) plays an important role as host defense mediator, excessive production of NO by iNOS has been involved in the pathology of many inflammatory diseases. Recently, we reported that the 2-imino-1,3-oxazolidine (1a) weakly inhibits iNOS and that introduction of an alkyl moiety on the oxazolidine ring of 1a enhances the inhibitory activity and selectivity for iNOS. In our search for better iNOS inhibitors, we focused our efforts on the 2-aminothiazole scaffold 3 as it possesses a ring similar to that of 1a. In this study, we evaluated the inhibitory activity of a series of 2-aminothiazole derivatives against both iNOS and neuronal NOS (nNOS). Our results show that introduction of appropriately-sized substituents at the 4- and 5-position of the 2-aminothiazole ring improves the inhibitory activity and selectivity for iNOS. We also found that the selectivity of 5a [5-(1-methyl)ethyl-4-methylthiazol-2-ylamine] and 5b [5-(1,1-dimethyl)ethyl-4-methylthiazol-2-ylamine] for iNOS was similar to that of oxazolidine derivative 1b (4-methyl-5-propyl-2-imino-1,3-oxazolidine) and much higher than that of L-NAME. However, we could not enhance the inhibitory activity against iNOS by introducing an alkyl substituent into the 2-aminothiazole ring as we could in the case of oxazolidine one. On the other hand, introduction of bulky or hydrophilic substituent at any position of the 2-aminothiazole ring remarkably decreased or even abolished the inhibitory activity against NOS.  相似文献   

8.
Cholesterol-rich diet impairs endothelial NO synthase (eNOS) and enhances inducible NOS (iNOS) expression. In this study, we investigated effects of cholesterol on iNOS expression in high-fat-fed rat models, HepG2 and RAW264.7 cells. The high-fat diet increased the plasma total cholesterol level 6-7 fold and low-density lipoprotein cholesterol level (LDL-C) approximately 70 fold and slightly increased the level of lipid peroxidation as determined by thiobarbituric acid-reactive substance assay. The high-fat diet also increased plasma nitric oxide (NO) concentrations up to 5 fold, and induced iNOS mRNA expression in liver. The contractile responses of the endothelium-denuded thoracic aortic rings to phenylephrine were significantly damaged in high-fat-fed rats when assessed by organ chamber study. Treatment with estrogen for 4 days failed to reduce iNOS expressions as well as aortic contractility, although it improved lipid profiles. In cultured HepG2 or murine macrophage RAW264.7 cells, 3 days treatment with either 25-hydroxycholesterol or 7-ketocholesterol induced iNOS mRNA expression, as determined by RT-PCR. Our data suggested that the chronic exposure of hepatocytes and macrophage cells to high concentration of cholesterol or oxysterols may induce iNOS expression and subsequent synthesis of NO, which may be important in the pathogenesis of atherosclerosis.  相似文献   

9.
Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) have been known to be involved in various pathophysiological processes such as inflammation. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the LPS-induced expression of iNOS, and COX-2 in RAW 264.7 cells. When a cell-permeable SOD, Tat-SOD, was added to the culture medium of RAW 264.7 cells, it rapidly entered the cells in a dose-dependent manner. Treatment of RAW 264.7 cells with Tat-SOD led to decrease in LPS-induced ROS generation. Pretreatment with Tat-SOD significantly inhibited LPS-induced expression of iNOS and NO production but had no effect on the expression of COX-2 and PGE2 production in RAW 264.7 cells. Tat-SOD inhibited LPS-induced NF-κB DNA binding activity, IκBα degradation and activation of MAP kinases. These data suggest that SOD differentially regulate expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells.  相似文献   

10.
In a continuing effort to unravel mechanistic questions associated with metalloenzymes, we are developing methods for rapid delivery of electrons to deeply buried active sites. Herein, we report picosecond reduction of the heme active site of inducible nitric oxide synthase bound to a series of rhenium-diimine electron-tunneling wires, [Re(CO)3LL']+, where L is 4,7-dimethylphenanthroline and L' is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole or aminopropylimidazole to a distal imidazole (F8bp-im (1) and C3-F8bp-im (2)) or F (F9bp (3) and C3-F9bp (4)). All four wires bind tightly (Kd in the micromolar to nanomolar range) to the tetrahydrobiopterin-free oxidase domain of inducible nitric oxide synthase (iNOSoxy). The two fluorine-terminated wires displace water from the active site, and the two imidazole-terminated wires ligate the heme iron. Upon 355-nm excitation of iNOSoxy conjugates with 1 and 2, the active site Fe(III) is reduced to Fe(II) within 300 ps, almost 10 orders of magnitude faster than the naturally occurring reduction.  相似文献   

11.
Density functional theory methods have been employed to systematically investigate the overall mechanism of the second half-reaction of nitric oxide synthases. The initial heme-bound hydrogen peroxide intermediate previously identified is found to first undergo a simple rotation about its O-O peroxide bond. Then, via a "ping-pong" peroxidase-like mechanism the -O(in)H- proton is transferred back onto the substrate's -NO oxygen then subsequently onto the outer oxygen of the resulting Fe(heme)-OOH species. As a result, O(out) is released as H2O with concomitant formation of a compound I-type (Fe(heme)-O) species. Formation of the final citrulline and NO products can then be achieved in one step via a tetrahedral transition structure resulting from direct attack of the Fe(heme)-O moiety at the substrate's guanidinium carbon center. The possible role of alternative mechanisms involving a protonated compound II-type species or an initial transfer of only the -NH- hydrogen of the =NHOH+ group of N(omega)-hydroxy-L-arginine is also discussed.  相似文献   

12.
Mammalian inducible nitric oxide synthase (iNOS) catalyzes the production of l-citrulline and nitric oxide (NO) from L-arginine and O2. The Soret peak in the spectrum of the iNOS heme domain (iNOSoxy) shifts from 423 to 390 nm upon addition of a sensitizer-wire, [ReI-imidazole-(CH2)8-nitroarginine]+, or [ReC8argNO2]+, owing to partial displacement of the water ligand in the active site. From analysis of competitive binding experiments with imidazole, the dissociation constant (Kd) for [ReC8argNO2]+-iNOSoxy was determined to be 3.0+/-0.1 microM, confirming that the sensitizer-wire binds with higher affinity than both L-arginine (Kd=22+/-5 microM) and imidazole (Kd=14+/-3 microM). Laser excitation (355 nm) of [ReC8argNO2]+-iNOSoxy triggers electron transfer to the active site of the enzyme, producing a ferroheme in less than approximately 1 micros.  相似文献   

13.
Six lignans including a new lignan (1), beta-sitosterol glucopyranoside and phenylpropanoids were isolated from the whole plants of Balanophora abbreviata Bl. (Balanophoraceae). Their structures were determined by NMR, MS analysis and other spectroscopic methods. Lignans (1, 2 and 4) showed potent inhibitory activities on the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells.  相似文献   

14.
Nitric oxide synthases (NOS) are hemoproteins that catalyze the reaction of L-arginine to L-citrulline and nitric oxide. N-(3-(Aminomethyl)benzyl)acetamidine (1400W) was reported to be a slow, tight-binding, and highly selective inhibitor of iNOS in vitro and in vivo. Previous mechanistic studies reported that 1400W was recovered quantitatively after iNOS fully lost its activity and modification to iNOS was not detected. Here, it is shown that 1400W is a time-, concentration-, and NADPH-dependent irreversible inactivator of iNOS. HPLC-electrospray mass spectrometric analysis of the incubation mixture of iNOS with 1400W shows both loss of heme cofactor and formation of biliverdin, as was previously observed for iNOS inactivation by another amidine-containing compound, N5-(1-iminoethyl)-L-ornithine (L-NIO). The amount of biliverdin produced corresponds to the amount of heme lost by 1400W inactivation of iNOS. A convenient MS/MS-HPLC methodology was developed to identify the trace amount of biliverdin produced by inactivation of iNOS with either 1400W or L-NIO to be biliverdin IXalpha out of the four possible regioisomers. Two mechanisms were previously proposed for iNOS inactivation by L-NIO: (1) uncoupling of the heme peroxide intermediate, leading to destruction of the heme to biliverdin; (2) abstraction of a hydrogen atom from the amidine methyl group followed by attachment to the heme cofactor, which causes the enzyme to catalyze the heme oxygenase reaction. The second mechanistic proposal was ruled out by inactivation of iNOS with d3-1400W, which produced no d2-1400W. Detection of carbon monoxide as one of the heme-degradation products further excludes the covalent heme adduct mechanism. On the basis of these results, a third mechanism is proposed in which the amidine inactivators of iNOS bind as does substrate L-arginine, but because of the amidine methyl group, the heme peroxy intermediate cannot be protonated, thereby preventing its conversion to the heme oxo intermediate. This leads to a change in the enzyme mechanism to one that resembles that of heme oxygenase, an enzyme known to convert heme to biliverdin IXalpha. This appears to be the first example of a compound that causes irreversible inactivation of an enzyme without itself becoming modified in any way.  相似文献   

15.
SC-84536, a selective inhibitor of inducible nitric oxide synthase (iNOS), is targeted for the treatment of osteoarthritis, neuropathic pain, and asthma. The initial technology for constructing this molecule was acceptable only for the preparation of small quantities of material, but was not practical for larger scale work. This Letter describes our effort toward developing an alternative synthetic route for the carbon framework of SC-84536.  相似文献   

16.
Intersubunit intramolecular electron transfer (IET) from FMN to heme is essential in the delivery of electrons required for O2 activation in the heme domain and the subsequent nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation that serves as the input state for reduction of FMN by electrons from NADPH and FAD in the reductase domain. To favor formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct murine inducible nitric oxide synthase (iNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of the IET between the FMN and heme domains in this construct was directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single domain heme oxygenase constructs.  相似文献   

17.
Asthma is characterized by airway inflammation induced by immune dysfunction to inhaled antigens. Although respiratory viral infections are the most common cause of asthma exacerbation, immunologic mechanisms underlying virus-associated asthma exacerbation are controversial. Clinical evidence indicates that nitric oxide (NO) levels in exhaled air are increased in exacerbated asthma patients compared to stable patients. Here, we evaluated the immunologic mechanisms and the role of NO synthases (NOSs) in the development of virus-associated asthma exacerbation. A murine model of virus-associated asthma exacerbation was established using intranasal challenge with ovalbumin (OVA) plus dsRNA for 4 weeks in mice sensitized with OVA plus dsRNA. Lung infiltration of inflammatory cells, especially neutrophils, was increased by repeated challenge with OVA plus dsRNA, as compared to OVA alone. The neutrophilic inflammation enhanced by dsRNA was partly abolished in the absence of IFN-gamma or IL-17 gene expression, whereas unaffected in the absence of IL-13. In terms of the roles of NOSs, dsRNA-enhanced neutrophilic inflammation was significantly decreased in inducible NOS (iNOS)-deficient mice compared to wild type controls; in addition, this phenotype was inhibited by treatment with a non-specific NOS inhibitor (L-NAME) or an specific inhibitor (1400 W), but not with a specific endothelial NOS inhibitor (AP-CAV peptide). Taken together, these findings suggest that iNOS pathway is important in the development of virus-associated exacerbation of neutrophilic inflammation, which is dependent on both Th1 and Th17 cell responses.  相似文献   

18.
A new and efficient synthetic pathway employed the aldol condensation between the acetophenone (3) and vanillin derivative (4) resulted in the precursor chalcone intermediate (14). The target compound viscolin (1) could be afforded through the hydrogenation of the chalcone and followed by deprotection. The present strategy described the development of a more efficient procedure that allowed large-scale production of viscolin for the further research of biological activity both in vitro and in vivo.  相似文献   

19.
Electronic structure calculations show that the cofactor H4B can be a key factor in a proton transfer relay in nitric oxide synthase, and that 4-amino-H4B cannot fulfill this role.  相似文献   

20.
Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in vascular functions, including vasorelaxation. We here investigated the pharmacological effect of the natural product syringaresinol on vascular relaxation and eNOS-mediated NO production as well as its underlying biochemical mechanism in endothelial cells. Treatment of aortic rings from wild type, but not eNOS(-/-) mice, with syringaresinol induced endothelium-dependent relaxation, which was abolished by addition of the NOS inhibitor N(G)-monomethyl-L-arginine. Treatment of human endothelial cells and mouse aortic rings with syringaresinol increased NO production, which was correlated with eNOS phosphorylation via the activation of Akt and AMP kinase (AMPK) as well as elevation of intracellular Ca(2+) levels. A phospholipase C (PLC) inhibitor blocked the increases in intracellular Ca(2+) levels, AMPK-dependent eNOS phosphorylation, and NO production, but not Akt activation, in syringaresinol- treated endothelial cells. Syringaresinol-induced AMPK activation was inhibited by co-treatment with PLC inhibitor, Ca(2+) chelator, calmodulin antagonist, and CaMKKβ siRNA. This compound also increased eNOS dimerization, which was inhibited by a PLC inhibitor and a Ca(2+)-chelator. The chemicals that inhibit eNOS phosphorylation and dimerization attenuated vasorelaxation and cGMP production. These results suggest that syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca(2+)/CaMKKβ-dependent eNOS phosphorylation and Ca(2+)-dependent eNOS dimerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号