首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
298±1K下考察了伯胺N1923(B)与其硫氰酸盐共存, 用煤油作稀释剂时, 从1.00mol.dm^-^3(Na, H)SCN水相中萃取Co(II)或Ni(II)的平衡, 萃合物组成为(BH)2M(SCN)4.XB, X最大为4  相似文献   

2.
298±1K下考察了伯胺N1923(B)与其硫氰酸盐共存, 用煤油作稀释剂时, 从1.00mol.dm^-^3(Na, H)SCN水相中萃取Co(II)或Ni(II)的平衡, 萃合物组成为(BH)2M(SCN)4.XB, X最大为4  相似文献   

3.
The addition of catalytic amounts of Ni(II) salts provide enhanced reactivity and selectivity in numerous reactions of SmI(2), but the mechanistic basis for their effect is unknown. We report spectroscopic and kinetic studies on the mechanistic role of catalytic Ni(II) in the samarium Barbier reaction. The mechanistic studies presented herein show that the samarium Barbier reaction containing catalytic amounts of Ni(II) salts is driven solely by the reduction of Ni(II) to Ni(0) in a rate-limiting step. Once formed, Ni(0) inserts into the alkyl halide bond through oxidative addition to produce an organonickel species. During the reaction, the formation of colloidal Ni(0) occurs concomitantly with Ni(0) oxidative addition as an unproductive process. Overall, this study shows that a reaction thought to be driven by the unique features of SmI(2) is in fact a result of known Ni(0) chemistry.  相似文献   

4.
王江  邓光辉  柳红  蒋华良 《有机化学》2008,28(7):1138-1144
Ni(II)螯合物诱导合成氨基酸是氨基酸合成方法中一类新颖且有工业生产价值的合成方法. 从合成方法学 、络合金属离子的优选、配体的改进、卤代片段的选择、合成氨基酸种类等方面介绍该合成方法的研究进 展.  相似文献   

5.
Neutral complexes of Cu(II), Ni(II), Co(II), and Zn(II) have been synthesized from the oxamide-based ligand derived from leucine and diethyloxalate. The structural features have been deduced from their microanalytical, IR, UV/Vis, mass, 1H and 13C NMR spectral data. The Co(II) and Ni(II) chelates have octahedral geometries and the Cu(II) chelate is a square-pyramidal geometry. The non-electrolytic and monomeric nature of the complexes is shown by their magnetic susceptibility and low conductance data. The biological activities of the ligand and its metal chelates against gram-positive and negative bacteria and fungi are also reported. All the compounds are antimicrobially active and show higher activity than the free ligand.  相似文献   

6.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

7.
Over the past few years, the utilization of late transition metal-based soluble complexes as styrene polymerization catalysts has received considerable attention1. Various systems have been explored. For example, cationic h3-allylnickel complexes alone2 or modified by P (III) ligands3 as well as a few other systems (e. g., cationic h3-benzylic nickel complexes4) are active homogeneous catalysts for the low molecular weight polymerization of styrene by simple cationic mechanism2,3,4. Neut…  相似文献   

8.
Synthesis of volatile complexes based on -ketoimine pivalyltrifluoroacetone, C(CH3)3C(NH)CH2COCF3, is described. The general formula of the complexes is M(L)2, where M = Cu, Ni, Pd. Complexes of this kind with Ni and Pd were obtained for the first time. The Cu and Pd complexes were found to be isostructural. A comprehensive crystal-chemical study showed that all structures are molecular and built of trans-complexes. The central atom has a square plane environment. The average M-O and M-N distances are nearly equal in all compounds: 1.84 , 1.92 , and 1.98 for Ni, Cu, and Pd complexes, respectively; the mean values of the O-M-N chelate angles are 93.4°, 91.9°, and 92.7°, respectively.Original Russian Text Copyright © 2004 by I. A. Baidina, G. I. Zharkova, N. V. Pervukhina, S. A. Gromilov, and I. K. IgumenovTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 4, pp. 713–722, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

9.
车迅  宋果男  李同信 《化学学报》1989,47(10):962-966
本工作合成了下述金属配合物: MCl2L2(M=Pd, Pt), NiX2L2(X=Cl, Br, I),L=PPh3-x(C5H9)x(x=0-3), 并研究了它们的远红外光谱和某些低频Raman光谱, 对某些M-P, M-X振动谱带做出了归属, 并提供结构信息。  相似文献   

10.
For a fundamental study on the development of novel extraction divalent metal, the extraction behaviour of copper(II), cobalt(II) and nickel(II) is studied with salicylidèneaniline (SAN). The phenol group in the Schiff base moiety leads to a large increase in the percentage of transition metal ions. SAN has both good reactivity towards metal ions and solubility in organic solvents. The solvent extraction of copper(II), cobalt(II) and nickel(II) with salicylidèneaniline from sulphate media is studied with the following parameters: pH, concentration of the extractant and the nature of diluent. The stoichiometry coefficients of the extracted species are determined by the slope analysis method. The extraction reaction proceeds by cation exchange mechanism and the extracted species are: CuL2HL, CoL2HL and NiL2. The extaction constants are evaluated for the different diluents. Under suitable conditions of pH, the solvent extraction of cobalt(II) and nickel(II) in different diluents leads to third phase formation. This tendency is confirmed from numerical extraction constants for both metal cations (log?K ex?=??15.10?±?0.03 for nickel(II) in CHCl3) and (log?K ex?=??12.56?±?0.04 for cobalt(II) in CHCl3). The extraction efficiency is found to follow the order Cu(II)?>?Co(II)?>?Ni(II).  相似文献   

11.
本工作合成了下述金属配合物: MCl2L2(M=Pd, Pt), NiX2L2(X=Cl, Br, I),L=PPh3-x(C5H9)x(x=0-3), 并研究了它们的远红外光谱和某些低频Raman光谱, 对某些M-P, M-X振动谱带做出了归属, 并提供结构信息。  相似文献   

12.
Nucleolytic activities of novel mononuclear Cu(II), homo- and heterodinuclear Cu(II)–Ni(II) complexes with two diester-type ligands were investigated on pCYTEXP by neutral agarose gel electrophoresis. The analyses of the cleavage products obtained electrophoretically indicate that the examined complexes induce very similar conformational changes on supercoiled DNA by converting supercoiled form to nicked form. At concentrations greater than 100M, the complexes possessed effective nucleolytic activities for 10min of incubation time. However, their nucleolytic activities did not increase significantly with longer periods of incubation. The pH-nucleolytic activity profiles of the complexes differed significantly. Metal complex induced DNA cleavage was also tested for inhibition by various radical scavengers. It could be proposed from the data that diffusible intermediate oxidants are not involved in these reactions or they are not necessary for DNA cleavage since none of antioxidants inhibited DNA cleaving activities of the complexes.  相似文献   

13.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

14.
Ten mixed ligand complexes of the type [M(X-QA)(aa)] and [Ni(X-QA)2(Haa)(H2O)],where X-HQA=5-arylazo-8-hydroxyquinoline derivatives, M=Co(II) orCu(II) and Haa=glycine (gly), alanine (ala) or methionine (met), have been prepared. The complexes have been characterized by elemental analysis, IR and electron spectra and thermal analysis. A tetrahedral structure has been proposed for the cobalt(II) and copper(II) complexes with bidentate coordination of amino acids. The nickel(II) complexes have been assigned an octahedral structure with the amino acids acting as monodentate ligands. The thermal behaviour of the complexes has been studied before and after γ-irradiation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
A series of mono- and heterodinuclear macro-acyclic complexes of [ZnLCu(II)]2+ and [ZnLNi(II)]2+ were synthesized by a stepwise procedure. The phenol-based macro-acyclic dicompartmental ligands (L2?) possess contagious hexadentate (N4O2) and tetradentate (N2O2) coordination sites, where in the mononuclear complexes [ZnL(H+)2]2+ the latter site containing two alkyl-imine donor groups (ethyl or isopropyl) is attached to the azomethine moieties. The alkyl group(s) is eliminated upon introduction of the second metal (II) ion into N2O2 coordination site as a result of steric crowding of the alkyl groups along with the lack of flexibility associated with the imine groups. When the second metal ion is Cu(II) and R = isopropyl, the both of them are eliminated but when R = Et only one ethyl group is removed. However, in case of Ni(II) as the second metal ion, the both alkyl groups are eliminated regardless of the nature of the alkyl group. The origins of the structural variations are discussed. The prepared complexes were characterized by elemental analysis, molar conductance measurements, X-ray crystallography, IR, NMR and UV–Vis spectroscopies.  相似文献   

16.
Summary. Nucleolytic activities of novel mononuclear Cu(II), homo- and heterodinuclear Cu(II)–Ni(II) complexes with two diester-type ligands were investigated on pCYTEXP by neutral agarose gel electrophoresis. The analyses of the cleavage products obtained electrophoretically indicate that the examined complexes induce very similar conformational changes on supercoiled DNA by converting supercoiled form to nicked form. At concentrations greater than 100M, the complexes possessed effective nucleolytic activities for 10min of incubation time. However, their nucleolytic activities did not increase significantly with longer periods of incubation. The pH-nucleolytic activity profiles of the complexes differed significantly. Metal complex induced DNA cleavage was also tested for inhibition by various radical scavengers. It could be proposed from the data that diffusible intermediate oxidants are not involved in these reactions or they are not necessary for DNA cleavage since none of antioxidants inhibited DNA cleaving activities of the complexes.  相似文献   

17.
Monometallic zinc(II) and nickel(II) complexes, [Zn(H2nsh)(H2O)] (1) and [Ni(H2nsh)(H2O)2] (2), have been synthesized in methanol by template method from bis(2-hydroxy-1-naphthaldehyde)succinoyldihydrazone (H4nsh). Reaction of monometallic complexes with alternate metal(II) acetates as a transmetallator in 1 : 3 molar ratio resulted in the formation of heterobimetallic complexes [NiZn(nsh)(A)3] and [ZnNi(nsh)(A′)2] (A = H2O (3), py (4), 2-pic (5), 3-pic (6), 4-pic (7)), (A′ = H2O (8), py (9), 2-pic (10), 3-pic (11), and 4-pic (12)). The complexes have been characterized by elemental analyzes, mass spectra, molar conductance, magnetic moments, electronic, EPR, and IR spectroscopies. All of the complexes are non-electrolytes. Monometallic zinc(II) is diamagnetic while monometallic nickel(II) complex and all heterobimetallic complexes are paramagnetic. The metal centers in heterobimetallic complexes are tethered by dihydrazone and naphthoxo bridging. Zinc(II) is square pyramidal; nickel(II) is six-coordinate distorted octahedral except [ZnNi(nsh)(A)2], in which nickel(II) has square-pyramidal geometry. The displacement of metal center in monometallic complexes by metal ion has been observed in the resulting heterobimetallic complexes.  相似文献   

18.
Benzyl(4-methoxyphenyl)dithiophosphinic acid (HL) was obtained as solid and was treated with the NiCl26H2O, CoCl26H2O, ZnCl2, and CdCl2 to prepare its Ni(II), Co(II), Zn(II), and Cd(II) complexes. The nickel complex was further treated with pyridine which led to the formation of octahedral dipyridine derivative. HL was obtained through the addition reaction of the perthiophosphonic acid anhydride Lawesson reagent, (LR), [2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide], with the corresponding Grignard compound (benzylmagnesium bromide) in diethyl ether medium.

The complexes were all of the stoichiometry of [M(L)2]x, with x = 1 for M = Ni2+ and x = 2 for M = Co2+, Cd2+ and Zn2+. The coordination geometry was square planar in the nickel(II) complex and tetrahedral in the others. Similar to many other nickel(II) complexes, the Ni(L)2 reacts reversibly with pyridine to yield the octahedral complex ({(Py)2Ni(L)2}).

The compounds were characterized by elemental analysis; MS, FTIR, and Raman spectroscopies. The magnetic susceptibilities of the complexes were measured to confirm the hybridization patterns and the geometries. Single-crystal X-ray analyses of Ni(L)2 and [Co(L)2]2 complexes were also carried out to prove the molecular topologies.  相似文献   

19.
The reactions of complex formation of Cu(II), Co(II), Zn(II), Ni(II), and Cd(II) acetates with 3,3′,4,4′5,5′-hexamethyl-2,2′-dipyrrolylmethene (HL) in DMF were studied by the electronic spectroscopy and calorimetric titration methods at 298.15 K. The main products of the above reactions are [ML2] chelates. In the case of Cu and Ni salts, the process occurs through the spectrally recorded stage of formation of the heteroligand [ML(AcO)] complexes. The reaction with Cd acetate terminates at the stage of the heteroligand complex formation due to the large radius and decreasing electron affinity of the Cd2+ ion. The effect of the metal nature appears in the increasing thermodynamic stability of single-type complexes in the series [ML2]: Ni(II) < Zn(II) < Co(II) < Cu(II) and [ML(AcO)]: Cd(II) < Ni(II) < Cu(II).  相似文献   

20.
研究了甲醛、环氧氯丙烷交联壳聚糖树脂(AECTS)对Ni(II)的吸附行为和吸附Ni(II)对树脂结构及性能的影响.用FTIR,WAXD,TGA和DSC对吸附产物进行了结构表征,并深入分析了AECTS与Ni(II)之间的作用机理.结果表明:AECTS主要以配位形式吸附Ni(II);AECTS吸附Ni(II)后,结晶度下降、总体上热稳定性变差;Ni(II)对AECTS的主链分解具有明显的催化功能,而空气气氛中对AECTS在500℃附近的分解表现出火焰缓蚀作用.AECTS对Ni(II)的吸附行为符合Langmuir模型,属于单分子层吸附,所有吸附位对Ni(II)的作用近似相同;与壳聚糖(CTS)比较,造成AECTS对Ni(II)吸附量增大的主要原因是AECTS结晶度下降和孔隙率增加,二者导致在交联处理前Ni(II)难于接近的吸附位点“活性”相对增大,使其更容易与Ni(II)相结合;不同介质对AECTS吸附Ni(II)的影响大小顺序为HCl>CdCl2>MgCl2>NaCl,前两者使吸附量减小,MgCl2使吸附量稍有增加,NaCl对吸附量基本没有影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号