首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clusters of Cu (2+)(H 2O) n , n = 6-12, formed by electrospray ionization, are investigated using infrared photodissociation spectroscopy, blackbody infrared radiative dissociation (BIRD), and density functional theory of select clusters. At 298 K, the BIRD rate constants increase with increasing cluster size for n >or= 8, but the trend reverses for the smaller clusters where Cu (2+)(H 2O) 6 is less stable than Cu (2+)(H 2O) 8. This trend in stability is consistent with a change in fragmentation pathway from loss of a water molecule for clusters with n >or= 9 to loss of hydrated protonated water clusters and the formation of the corresponding singly charged hydrated metal hydroxide for n 相似文献   

2.
Two-dimensional infrared (2D-IR) spectroscopy has been used to probe structure and dynamics in binary sphingomyelin/phospholipid liposomes. The liposomes consist of 1-palmitoyl-2-linoleyl phosphatidylcholine (PLPC) and sphingomyelin (SPM) in the ratio 1:1. The diagonal part of the 2D-IR spectra shows two bands which are due to amide I of SPM and to the carbonyl moieties of PLPC. The diagonal components of the 2D-IR spectra reveal a difference in the molecular dynamics. The presence of off-diagonal cross-peaks indicates the occurrence of intermolecular structural correlation. The intensity of the cross-peaks is consistent with segregation of two lipid components into PLPC and SPM molecular domains.  相似文献   

3.
The kinetics of crystallization of poly-N-isopropylacrylamide (PNIPAM) particles has been investigated using the UV-visible transmission spectroscopy. Since the particle size decreases with the increase in temperature, microgel dispersions of different volume fractions have been obtained by varying the temperature of a single sample. It is found that the rates of the change in crystallinity, the average crystallite size, and the number density of crystallites at the most rapid stage over a certain time interval at various temperatures can be described by the power-law relations. At 19 degrees C, the PNIPAM system behaves as a hard sphere system under microgravity. The hard sphere theory based on Monte Carlo simulation has been used as a reference point to compare with conventional hard spheres, soft spheres, and PNIPAM spheres.  相似文献   

4.
5.
We propose a new method to determine the proton transfer (PT) rate in channel proteins by two-dimensional infrared (2DIR) spectroscopy. Proton transport processes in biological systems, such as proton channels, trigger numerous fundamental biochemical reactions. Due to the limitation in both spatial and time resolution of the traditional experimental approaches, describing the whole proton transport process and identifying the rate limiting steps at the molecular level is challenging. In the present paper, we focus on proton transport through the Gramicidin A channel. Using a kinetic PT model derived from all-atom molecular dynamics simulations, we model the amide I region of the 2DIR spectrum of the channel protein to examine its sensitivity to the proton transport process. We demonstrate that the 2DIR spectrum of the isotope-labeled channel contain information on the PT rate, which may be extracted by analyzing the antidiagonal linewidth of the spectral feature related to the labeled site. Such experiments in combination with detailed numerical simulations should allow the extraction of site dependent PT rates, providing a method for identifying possible rate limiting steps for proton channel transfer.  相似文献   

6.
Hfq is a bacterial protein involved in RNA metabolism. Besides this, Hfq's role in DNA restructuring has also been suggested. Since this mechanism remains unclear, we examined the DNA conformation upon Hfq binding by combining vibrational spectroscopy and neutron scattering. Our analysis reveals that Hfq, which preferentially interacts with deoxyadenosine rich sequences, induces partial opening of dA-dT sequences accompanied by sugar repuckering of the dA strand and hence results in a heteronomous A/B duplex. Sugar repuckering is probably correlated with a global dehydration of the complex. By taking into account Hfq's preferential binding to A-tracts, which are commonly found in promoters, potential biological implications of Hfq binding to DNA are discussed.  相似文献   

7.
We have measured resonant and off-resonant Auger-electron spectra of liquid water. Continuumlike transitions near and above the O1s vertical ionization energy are identified by the characteristic normal Auger-electron spectra. On the contrary, well-resolved spectator shifts of the main Auger-electron peak are observed at the liquid-water O1s absorption main edge and near the absorption pre-edge. The shifts of 1.4 and 1.9 eV arise from the localized nature of the excitation. Excited-state localization/delocalization is also discussed for the analogous vacuum ultraviolet (VUV) transitions, and we point out the similarities between x-ray and VUV absorption spectra of liquid water.  相似文献   

8.
The structures of C(7)H(9)(+) ions generated by protonation of toluene are investigated by means of gas-phase infrared spectroscopy in conjunction with labeling experiments and complementary mass spectrometric studies. In full consistency with previous studies, the unimolecular as well as the multiphoton-induced dissociation of mass-selected C(7)H(9)(+) ions lead to losses of molecular hydrogen and methane. Labeling data clearly imply the occurrence of skeletal rearrangements of protonated toluene to isomeric structures in the course of fragmentation. Complementary reactivity studies indicate, however, that the C(7)H(7)(+) ions generated upon dehydrogenation of C(7)H(9)(+) bear the benzylium structure, rather than that of the more stable tropylium ion. Combination of labeling data and extensive theoretical studies lead to a scheme for the fragmentation of protonated toluene, which can account for all experimental findings reasonably well. As far as infrared spectroscopy of gaseous ions is concerned, the present results confirm the structural predictions derived from theory and provide evidence for the existence of protonated cycloheptatriene but also pose some questions about the comparability of intensities in multiphoton dissociation and linear absorption spectra.  相似文献   

9.
《Chemical physics》1986,108(3):343-348
Coherent anti-stokes Raman spectroscopy has been used as a probe for molecules pumped by high-intensity CO2 laser radiation. Ozone, sulfur hexafluoride, and chloroethane have been investigated. The intensity of the ground-state CARS signal is decreased by IR multiphoton excitation, but signals at new vibrational origins do not appear. The observations on chloroethane are interpreted in terms of a rate-equation model for IRMPE, modified to take vibrational redistribution into account.  相似文献   

10.
The IR absorption band at 5250 cm–1 is used to determine 0–5% water in furfural. The accuracy of the determination is not less than 5%. The method is suitable for any kind of furfural. The analytical results are unaffected by the presence of formic, acetic, and pyromucic acids, and methanol and ethanol.  相似文献   

11.
12.
Two-dimensional correlation spectroscopy was used to study the composition-dependent spectral variations of the CH-stretching bands of N,N-dimethylformamide (DMF)-water mixtures with X(DMF) ranging from 0.98 to 0.60. By a detailed correlation analysis of the spectral changes of the CH- and OH-stretching bands, it is found that the intensities of the CH and OH bands change in different ways when the water content is increased. It is also found that two different regions of the water content can be distinguished, in which the intensity changes have different signatures. A tentative explanation for how these phenomena might be related to structural changes in the mixture is proposed. The structural change of DMF induced by the water hydrogen bonded on the carbonyl group is supposed to be the possible origin of the methyl C-H blueshift instead of the direct C-H...O interactions before the hydrophobic hydration takes place.  相似文献   

13.
Time-resolved surface enhanced infrared absorption (SEIRA) spectroscopy is employed to analyse the dynamics of the protein structural changes coupled to the electron transfer process of immobilised cytochrome c (Cyt-c). Upon electrostatic binding of Cyt-c to Au electrodes coated with self-assembled monolayers (SAMs) of carboxyl-terminated thiols, cyclic voltammetric measurements demonstrate a reversible redox process with a redox potential that is similar to that of Cyt-c in solution, and a non-exponential distance-dependence of the electron transfer rate as observed previously (D. H. Murgida and P. Hildebrandt, Chem. Soc. Rev. 2008, 37, 937). On the basis of characteristic redox-state-sensitive amide I bands, the protein structural changes triggered by the electron transfer are monitored by rapid scan and step scan SEIRA spectroscopy in combination with the potential jump technique. Whereas the temporal evolution of the conjugate bands at 1693 and 1673 cm(-1) displays the same rate constants as electron transfer, the time-dependent changes of the 1660-cm(-1) band are slower by about a factor of 2. The study demonstrates that time-resolved SEIRA spectroscopy provides further information about the dynamics and mechanism of interfacial processes of redox proteins, thereby complementing the results obtained from other surface-sensitive techniques. In comparison with previous surface enhanced resonance Raman spectroscopic findings, the present results are discussed in terms of the local electric field strengths at the Au/SAM/Cyt-c interface.  相似文献   

14.
(H2O)(N) clusters generated in a supersonic expansion source with N approximately 1000 were core ionized by synchrotron radiation, giving rise to core-level photoelectron and Auger electron spectra (AES), free from charging effects. The AES is interpreted as being intermediate between the molecular and solid water spectra showing broadened bands as well as a significant shoulder at high kinetic energy. Qualitative considerations as well as ab initio calculations explain this shoulder to be due to delocalized final states in which the two valence holes are mostly located at different water molecules. The ab initio calculations show that valence hole configurations with both valence holes at the core-ionized water molecule are admixed to these final states and give rise to their intensity in the AES. Density-functional investigations of model systems for the doubly ionized final states--the water dimer and a 20-molecule water cluster--were performed to analyze the localization of the two valence holes in the electronic ground states. Whereas these holes are preferentially located at the same water molecule in the dimer, they are delocalized in the cluster showing a preference of the holes for surface molecules. The calculated double-ionization potential of the cluster (22.1 eV) is in reasonable agreement with the low-energy limit of the delocalized hole shoulder in the AES.  相似文献   

15.
A simple, cost-effective and environmental friendly analytical method was developed for the quantification of erythromycin in tablet formulation using transmission Fourier Transform Infrared (FT-IR) spectroscopy for routine quality control analysis. There is no need of sample preparation except pellet formation for FT-IR analysis. Use of solvent was totally avoided in this method. Calibration was carried out by using simple Beer’s law in the FT-IR region between 1743 and 1697 cm−1. The excellent coefficient of determination (R2 = 0.998) was achieved with 0.0247 and 1.14 root mean square error of prediction (RMSEP) and root mean square error of cross validation (RMSECV), respectively. The results of the study revealed that the transmission FT-IR spectroscopy could be effectively used for rapid determination of active ingredients like erythromycin in pharmaceutical formulations to control the quality of finished products.  相似文献   

16.
In the field of FTIR spectroscopy, the far infrared (FIR) spectral region has been so far less investigated than the mid-infrared (MIR), even though it presents great advantages in the characterization of those inorganic compounds, which are inactive in the MIR, such as some art pigments, corrosion products, etc. Furthermore, FIR spectroscopy is complementary to Raman spectroscopy if the fluorescence effects caused by the latter analytical technique are considered. In this paper, ATR in the FIR region is proposed as an alternative method to transmission for the analyses of pigments. This methodology was selected in order to reduce the sample amount needed for analysis, which is a must when examining cultural heritage materials. A selection of pigments have been analyzed in both ATR and transmission mode, and the resulting spectra were compared with each other. To better perform this comparison, an evaluation of the possible effect induced by the thermal treatment needed for the preparation of the polyethylene pellets on the transmission spectra of the samples has been carried out. Therefore, pigments have been analyzed in ATR mode before and after heating them at the same temperature employed for the polyethylene pellet preparation. The results showed that while the heating treatment causes only small changes in the intensity of some bands, the ATR spectra were characterized by differences in both intensity and band shifts towards lower frequencies if compared with those recorded in transmission mode. All pigments' transmission and ATR spectra are presented and discussed, and the ATR method was validated on a real case study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Two-dimensional infrared (2D IR) spectroscopy was used to probe the submolecular dynamics of atactic polystyrene. 2D IR is a powerful analytical technique especially suited for the elucidation of localized motions of polymer segments. In 2D IR, a polymer sample is excited by a small-amplitude oscillatory strain at a frequency in the acoustic range. The fluctuation of IR dichroism signals resulting from the strain-induced reorientation of electric dipole-transition moments is monitored with a time-resolved spectrometer. Spectra defined by two independent wavenumber axes are constructed by applying a correlation analysis to such signals. The 2D spectra provide detailed information about the local dynamics of submolecular constituents of the system. From the sign of cross peaks in the synchronous 2D IR spectrum of glassy polystyrene, it is shown that the main-chain backbone of polystyrene reorients in the direction of applied strain. Cross peaks in an asynchronous 2D IR spectrum reveal highly localized reorientational motions of phenyl side groups occurring more or less independently of the main-chain realignment. In the glassy state, the phenyl ring tends to fold back along the main-chain, indicating that there exists a highly constrained local distortion of side groups during deformation.  相似文献   

18.
Reduced equation of motion for a multimode system coupled to multiple heat baths is constructed by extending the quantum Fokker-Planck equation with low-temperature correction terms (J. Phys. Soc. Jpn. 2005, 74, 3131). Unlike such common approaches used to describe intramolecular multimode vibration as a Bloch-Redfield theory and a stochastic theory, the present formalism is defined by the molecular coordinates. To explore the correlation among different modes through baths, we consider two cases of system-bath couplings. One is a correlated case in which two modes are coupled to a single bath, and the other is an uncorrelated case in which each mode is coupled to a different bath. We further classify the correlated case into two cases, the plus- and minus-correlated cases, according to distinct correlation manners. For these, one-dimensional and two-dimensional infrared (2D-IR) spectra are calculated numerically by solving the equation of motion. It is demonstrated that 2D-IR spectroscopy has the ability to analyze the correlation of fluctuation-dissipation processes among different modes.  相似文献   

19.
Picosecond time-resolved surface-enhanced infrared absorption spectroscopy (SEIRAS) has been used for the first time to examine the potential jump at the electrochemical interface induced by a visible pulse irradiation. The potential dependent shift of the C-O stretching vibration of CO adsorbed on a Pt electrode was utilized to monitor the potential jump. A 6-cm(-1) red-shift was observed with a time delay of approximately 200 ps with respect to a visible pump-pulse irradiation (532 nm, 35 ps duration, 3 mJ cm(-2)). The observed red-shift is ascribed to the heating of the in-plane frustrated translational mode of CO and the negative shift of potential. These two contributions can be separated with the aid of the transient of the background reflectivity of the electrode surface. The heating of water layers near the surface is mainly responsible for the potential jump through the orientation change of water molecules. This method is promising as a tool to examine ultrafast electrode dynamics.  相似文献   

20.
To establish the composition of the gentamicin complex (GNMC) of copper(II) in the polymer matrix of an ion-selective membrane (ISM), we investigated spectra of the ISM upon both incorporation of the GNMC and its complex with copper(II) by the IR spectrometry method. A number of spectral changes were revealed: the appearance and disappearance of some absorption bands and batho- and hypsochromic shifts accompanied by the substantial rearrangement of the bands’ intensities. The observed effects are indicative of the change of the distribution of the charge within the molecule, the formation of new bonds, and rotational transformation in the formation of a chelate cycle. This confirms not only the presence of a complex in the polymer matrix but also that its structure is identical to the one found in solution before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号