共查询到20条相似文献,搜索用时 15 毫秒
1.
Implicit nonpolar solvent models 总被引:2,自引:0,他引:2
We have systematically analyzed a new nonpolar solvent model that separates nonpolar solvation free energy into repulsive and attractive components. Our analysis shows that either molecular surfaces or volumes can be used to correlate with repulsive free energies of tested molecules in explicit solvent with correlation coefficients higher than 0.99. In addition, the attractive free energies in explicit solvent can also be reproduced with the new model with a correlation coefficient higher than 0.999. Given each component optimized, the new nonpolar solvent model is found to reproduce monomer nonpolar solvation free energies in explicit solvent very well. However, the overall accuracy of the nonpolar solvation free energies is lower than that of each component. In the more challenging dimer test cases, the agreement of the new model with explicit solvent is less impressive. Nevertheless, it is found that the new model works reasonably well for reproducing the relative nonpolar free energy landscapes near the global minimum of the dimer complexes. 相似文献
2.
V. P. Arkhipov Z. Sh. Idiyatullin 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2012,86(1):142-146
The distribution of molecules between the free (intermicellar) and the micelle-bound states is found from the results of selective measurements of their self-diffusion coefficients in micellar solutions of ionic surfactants, i.e., sodium dodecylsulfate and cetyltrimethylammonium bromide. 相似文献
3.
Cheong DW Panagiotopoulos AZ 《Langmuir : the ACS journal of surfaces and colloids》2006,22(9):4076-4083
A lattice model for ionic surfactants with explicit counterions is proposed for which the micellization behavior can be accurately determined from grand canonical Monte Carlo simulations. The model is characterized by a few parameters that can be adjusted to represent various linear surfactants with ionic headgroups. The model parameters have a clear physical interpretation and can be obtained from experimental data unrelated to micellization, namely, geometric information and solubilities of tail segments. As a specific example, parameter values for sodium dodecyl sulfate were obtained by optimizing for the solubility of hydrocarbons in water and the structural properties of dodecane. The critical micelle concentration (cmc), average aggregation number, degree of counterion binding, and their dependence on temperature were determined from histogram reweighting grand canonical Monte Carlo simulations and were compared to experimental results. The model gives the correct trend and order of magnitude for all quantities but underpredicts the cmc and aggregation number. We suggest ways to modify the model that may improve agreement with experimental values. 相似文献
4.
5.
The energetics of micelle formation of three single-chain cationic surfactants bearing single (h = 1), double (h = 2), and triple (h = 3) trimethylammonium [(+)N(CH(3))(3)] headgroups have been investigated by microcalorimetry. The results were compared with the microcalorimetric data obtained from well-known cationic surfactant, cetyl trimethylammonium bromide (CTAB), bearing a single chain and single headgroup. The critical micellar concentrations (cmc's) and the degrees of counterion dissociation (alpha) of micelles of these surfactants were also determined by conductometry. The cmc and the alpha values increased with the increase in the number of headgroups of the surfactant. The relationship between the cmc of the surfactant in solution and its free energy of micellization (DeltaG(m)) was derived for each surfactant. Exothermic enthalpies of micellization (DeltaH(m)) and positive entropies of micellization (DeltaS(m)) were observed for all the surfactants. Negative DeltaH(m) values increased from CTAB to h = 1 to h = 2 and decreased for h = 3 whereas DeltaS(m) values decreased with increase in the number of headgroups. The DeltaG(m) values progressively became less negative with the increase in the number of headgroups. This implies that micelle formation becomes progressively less favorable as more headgroups are incorporated in the surfactant. From the steady-state fluorescence measurements using pyrene as a probe, the micropolarities sensed by the probe inside various micelles were determined. These studies suggest that the micelles are more hydrated with multiheaded surfactants and the micropolarity of micelles increases with the increase in the number of headgroups. 相似文献
6.
Li Y Li P Wang J Wang Y Yan H Dong C Thomas RK 《Journal of colloid and interface science》2005,287(1):333-337
A series of partially fluorinated cationic gemini surfactants and their corresponding monomeric surfactants have been studied by isothermal titration microcalorimetry. The critical micelle concentration (CMC) and enthalpy of micellization (DeltaH(mic)) were obtained from calorimetric curves. The CMCs of the gemini surfactants are much lower than those of the corresponding monomeric surfactants and decrease with an increase in the number of fluorine atoms on the hydrophobic chain. The micellization of partially fluorinated cationic gemini surfactants is much more exothermic than that of the corresponding monomeric surfactants. Because of the incompatibility of hydrocarbon spacer and partially fluorinated chain, DeltaH(mic) values of the surfactants with a C6 spacer are more negative than those of the surfactants with a C12 spacer. The variations in the architecture of the fluorocarbon chain segments may be the reason of the irregularities in the change of DeltaH(mic) for the gemini surfactants. Moreover, the contribution of the enthalpy generally increases with an increase in the number of fluorine atoms. 相似文献
7.
Guangyue Bai António Lopes Margarida Bastos 《The Journal of chemical thermodynamics》2008,40(10):1509-1516
Alkylimidazolium salts are a very important class of compounds. So far, calorimetry has hardly been used to characterize their solution behaviour. The enthalpies obtained from indirect methods have an intrinsic large uncertainty, and nowadays it is clear that calorimetry is the most sensitive technique for directly measuring the thermodynamic properties of aggregation.In this work, isothermal titration calorimetry (ITC) was used along with conductivity to determine the thermodynamics of aggregation of 1-alkyl-3-methylimidazolium chlorides ([Cnmim]Cl, n = 8, 10, 12, and 14) in aqueous solution. The critical micelle concentrations, cmc, were obtained from conductivity and calorimetry, and the enthalpies of micelle formation, ΔHmic, were derived from the calorimetric titrations. From conductivity, we could also derive the values for the degree of ionisation of the micelles (α), the molar conductivity (ΛM) of the [Cnmim]Cl micellar species and the molar conductivity at infinite dilution (Λ∞) for the [Cnmim]+ cations.Values are therefore reported for the enthalpy (ΔHmic), the Gibbs free energy (ΔGmic) and entropy (ΔSmic) changes for micelle formation. Further, the aggregate sizes and aggregation numbers were obtained by light scattering (LS) measurements.The observed variation of the thermodynamic properties with the alkyl chain length is discussed in detail and compared with the traditional cationic surfactants 1-alkyl-trimethylammonium chlorides, [CnTA]Cl. The difference in the values of the thermodynamic parameters for both types of surfactants is here related to the structure of their head groups. 相似文献
8.
《印度化学会志》2023,100(9):101077
The current study examines the effects of a phosphonium-based ionic liquid, trihexyltetra-decylphosphonium bis-(2,4,4-trimethyl pentyl)phosphinate [THTDPP], on the micellization properties of surfactants, namely sodium dodecyl sulfate (SDS) and Triton X-100 by using the stalagmometry, viscosity, colorimetric, and FTIR methods. The surface adsorption parameters, such as CMC, γCMC, Γmax, Amin, πCMC, and pC20, were determined using the stalagmometry method. The results show that with the addition of different weight percentages of [THTDPP], the CMC and γCMC values decreased considerably in the following order: water >0.5 wt% of IL > 0.7 wt% of IL > 1.0 wt% of IL. The Amin values decreased with an increase in the wt% of IL for Triton X-100, but for SDS, this value increased. The pC20 was observed to be greater in Triton X-100 compared to SDS. The ability of [THTDPP] to decrease the CMC was found to be greater in Triton X-100 compared to SDS. The relative viscosity was calculated, and the first observation was made at the pre-CMC stage, where the concentration of SDS+0.7 wt% IL was 4.0 mM. The second finding was made post-CMC at a concentration of 5.0 mM. Afterward, the relative viscosity graph grew slowly and gradually. The functional groups involved in the complexation between [THTDPP] and both surfactants were examined using FTIR spectroscopy. Additionally, the micellar solutions of surfactants + [THTDPP] were used to explore Paracetamol [PCM] aggregation. The findings from UV–vis spectroscopy show that Triton X-100 exhibits the highest binding affinity and has the most encouraging effect compared to SDS. 相似文献
9.
Basílio N Garcia-Rio L Martín-Pastor M 《Langmuir : the ACS journal of surfaces and colloids》2012,28(5):2404-2414
The self-aggregation of five amphiphilic p-sulfonatocalix[n]arenes bearing alkyl chains at the lower rim was investigated by NMR spectroscopy and electrical conductivity. The critical micelle concentration was determined, and the tendency of this special class of surfactants to self-aggregate in aqueous solution was analyzed as a function of the alkyl chain length and the number of aromatic units in the macrocyclic ring. The structure of the surfactants in the monomeric and micellized states was elucidated by means of (1)H NMR and, in the case of the calix[6]arene derivative, with 2D NMR experiments. While all amphiphilic calix[4]arenes studied here are blocked in the cone conformation, in the monomeric state the calix[6]arene adopts a pseudo-1,2,3-alternate conformation and the calix[8]arene is conformationally mobile. These calixarenes undergo an aggregation-induced conformational change, adopting the cone conformation in the micelles. The structure and size of the aggregates were studied by diffusion ordered spectroscopy (DOSY) experiments, and the results indicate that these surfactants self-assemble into ellipsoidal micelles. 相似文献
10.
Sakai K Umezawa S Tamura M Takamatsu Y Tsuchiya K Torigoe K Ohkubo T Yoshimura T Esumi K Sakai H Abe M 《Journal of colloid and interface science》2008,318(2):440-448
The adsorption and micellization behavior of novel sugar-based gemini surfactants (N,N(')-dialkyl-N,N(')-digluconamide ethylenediamine, Glu(n)-2-Glu(n), where n is the hydrocarbon chain length of 8, 10 and 12) has been studied on the basis of static/dynamic surface tension, fluorescence, dynamic light scattering (DLS) and cryogenic transmission electron microscope (cryo-TEM) data. The static surface tension of the aqueous Glu(n)-2-Glu(n) solutions measured at the critical micelle concentration (cmc) is observed to be significantly lower than that of the corresponding monomeric surfactants. This suggests that the gemini surfactants, newly synthesized in the current study, are able to form a closely packed monolayer film at the air/aqueous solution interface. The greater ability in the molecular association is supported by the remarkably (approximately 100-200 times) lower cmc of the gemini surfactants compared with the corresponding monomeric ones. With a combination of the fluorescence and DLS data, a structural transformation of the Glu(n)-2-Glu(n) micelles is suggested to occur with an increase in the concentration. The cryo-TEM measurements clearly confirm the formation of worm-like micelles of Glu(12)-2-Glu(12) at the concentration well above the cmc. 相似文献
11.
E.D. Manev S.V. Sazdanova R.Tsekov S.I. Karakashev A.V. Nguyen 《Colloids and surfaces. A, Physicochemical and engineering aspects》2008,319(1-3):29-33
Two adsorption models for ionic surfactants based on the Frumkin equation are examined to describe the measured surface tension isotherms of a series of alkali dodecylsulphates. In the model A the number of optimization parameters is reduced by additional modeling. The adsorption of counter-ions in the Stern layer is described via forming of ionic bonds, which free energy is significantly higher than that obtained by the model B. Concurrently the lateral interactions on the water/air interface are also found to be orders of magnitude stronger. Thus, the values of the adsorption parameters are more realistic, which supports the model A as a more relevant one. 相似文献
12.
In this article, the validity and accuracy of the CS-MT model introduced in article 1 for oil aggregates and in article 2 for nonionic surfactants is further evaluated by using it to model the micellization behavior of ionic and zwitterionic surfactants in aqueous solution. In the CS-MT model, two separate free-energy contributions to the hydrophobic driving force for micelle formation are computed using hydration data obtained from computer simulation: gdehydr, the free-energy change associated with dehydration, and ghydr, the change in the hydration free energy. To enable straightforward estimation of gdehydr and ghydr for ionic and zwitterionic surfactants, a number of simplifying approximations were made. Reasonable agreement between the CMCs predicted using the CS-MT model and the experimental CMCs was obtained for sodium dodecyl sulfate (SDS), dodecylphophocholine (DPC), cetyltrimethylammonium bromide (CTAB), two 3-hydroxy sulfonate surfactants (AOS-12 and AOS-16), and a homologous series of four DCNA bromide surfactants with a dimethylammonium head attached to a dodecyl alkyl tail and to an alkyl side chain of length CN, having the chemical formula C12H25CNH2N+1N(CH3)2Br, with N = 1 (DC1AB), 2 (DC2AB), 4 (DC4AB), and 6 (DC6AB). For six of these nine surfactants, the CMCs predicted using the CS-MT model are closer to the experimental CMCs than the CMCs predicted using the traditional molecular-thermodynamic (MT) model. For DC2AB, DC4AB, and DC6AB, which are the most structurally complex of the ionic surfactants modeled, the CMCs predicted using the CS-MT model are in remarkably good agreement with the experimental CMCs, and the CMCs predicted using the traditional MT model are quite inaccurate. Our results suggest that the CS-MT model accurately quantifies the hydrophobic driving force for micelle formation for ionic and zwitterionic surfactants in aqueous solution. For complex ionic and zwitterionic surfactants where it is difficult to accurately quantify the hydrophobic driving force for micelle formation using the traditional MT modeling approach, the CS-MT model represents a very promising alternative. 相似文献
13.
Lakhdar Berriche Samir Habi BenHariz Amine Gharbi Walid Talhi 《Journal of Dispersion Science and Technology》2019,40(3):378-389
We investigate the surface properties of aqueous binary mixtures of our cationic surfactant O-dodecyl-N,N′-diisopropylisourea hydrochloride (ISO-DIC C12) with commercially available nonionic surfactant polyoxyethylene p-(1,1,3,3-tetramethylbutyl)phenyl ether (TritonX-100) at different temperatures (288 to 303?K). The micellization behavior of the binary systems is studied by determining the surface tension and other important physicochemical parameters, such as the critical micelle concentration (CMC), surface tension at the CMC(γcmc), Krafft Temperature (TK), maximum excess concentration (Γmax), minimum surface area per molecule (Amin), surface pressure at the CMC (Пcmc), and the adsorption efficiency (pC20) at the air/water interface. The study has additionally covered the calculation of thermodynamic parameters of micellization, including the standard Gibbs free energy, the standard enthalpy, the standard entropy, the free energy, and the Gibbs free energy of adsorption at air/water interface. The CMC values of the binary systems determined by experimental data are used to evaluate the micellar composition in the mixed micelle, the interaction parameter β and the activity coefficients f1(ISO-DIC C12) and f2 (polyoxyethylene p-(1,1,3,3-tetramethylbutyl)phenyl ether) using the theoretical treatment proposed by Clint and Rubingh. Our results reveal that the proposed binary systems possess enhanced surface activity compared to those of the individual surfactants. 相似文献
14.
Kresheck GC 《Journal of colloid and interface science》2006,298(1):432-440
The thermodynamic parameters that govern micelle formation by four different nonionic surfactants were investigated by ITC and DSC. These included n-dodecyldimethylphosphine oxide (APO12), Triton X-100 (TX-100), n-octyltetraoxyethylene (C8E4), and N,N-dimethyloctylamine-N-oxide (DAO8). All of these surfactants had been previously investigated by solution calorimetry over smaller temperature ranges with conflicting conclusions as to the temperature dependence of the heat capacity change, DeltaCp, for the process. The temperature coefficient of the heat capacity change, B (cal/mol K2), was derived from the enthalpy data that were obtained at small intervals over a broad temperature range. The values obtained for each of the surfactants at 298.2 K for DeltaCp and B were -155+/-2 and 0.50+/-0.36 (APO12), -97+/-3 and -0.24+/-0.18 (TX-100), -105+/-2 and 1.0+/-0.3 (C8E4), and -82+/-1 and 0.36+/-0.04 (DAO8), cal/mol K and cal/mol K2, respectively. The resulting B-values did not correlate with the cmc, aggregation number, or structure of the monomer in an obvious way, but they were found to reflect the relative changes in hydration of the polar and nonpolar portions of the surfactant molecule as the micelles are formed. An analysis of the data obtained from DSC scans was used to describe the temperature dependence of the critical micelle concentration, cmc. An abrupt increase in heat capacity was observed for TX-100 and C8E4 solutions of 36.5+/-0.5 and 21+/-5 cal/mol K, respectively, as the temperature of the scan passed through the cloud point. This change in heat capacity may reflect the increased monomer concentration of the solutions that accompanies phase separation, although other interpretations of this jump are possible. 相似文献
15.
In the past, few theoretical attempts have been made to describe quantitatively the adsorption of ionic surfactants at liquid
interfaces. Well-known adsorption isotherms due to Frumkin or Hill–de Boer cannot respond to the specific electrostatic and
geometric properties of the surfactant molecules. Our approach is based on a combination of the Gouy–Chapman theory with a
modified Frumkin isotherm. The modification implies that the system is free to choose an optimal head group area and an optimal
arrangement of the surfactant molecules in the interface as a function of bulk concentration. Interaction energies between
neighbouring adsorbed surfactant molecules and between surfactant and water molecules are taken into consideration. The minimum
of the Gibbs free energy of the system is equivalent to a minimal interfacial tension. Thus, the thermodynamically stable
isotherm can be obtained as the lower envelope of the family of σ versus ln c isotherms resulting from different choices of the model parameters, including the area per molecule. According to the Gibbs
equation, the Γ versus ln c adsorption isotherm is obtained as the derivative of this envelope. By variation of the model parameters, the envelope of
the calculated adsorption isotherms can be fitted to experimental data of the interfacial tension versus bulk concentration.
A computer program is used to calculate the σ versus c and the Γ versus ln c curves as well as to fit the parameters.
Received: 28 October 1999/Accepted: 8 February 2000 相似文献
16.
N. G. Arutyunyan L. R. Arutyunyan V. V. Grigoryan R. S. Arutyunyan 《Colloid Journal》2008,70(5):666-668
The effect of aminoacids (DL-glycine, DL-alanine, DL-serine, L-leucine, L-lysine, DL-phenylalanine, DL-tyrosine, and L-aspartic acid) on the critical micellization concentration (CMC) of nonionic, anionic, and cationic surfactants is investigated. It is established that, as the hydrophobicity of aminoacids rises, the CMC values of ionic and nonionic surfactants increase and decrease, respectively. An exception is aspartic acid, which reduces CMC values irrespective of the nature of surfactants. 相似文献
17.
The recent development of approximate analytical formulations of continuum electrostatics opens the possibility of efficient and accurate implicit solvent models for biomolecular simulations. One such formulation (ACE, Schaefer & Karplus, J. Phys. Chem., 1996, 100:1578) is used to compute the electrostatic contribution to solvation and conformational free energies of a set of small solutes and three proteins. Results are compared to finite-difference solutions of the Poisson equation (FDPB) and explicit solvent simulations and experimental data where available. Small molecule solvation free energies agree with FDPB within 1–1.5 kcal/mol, which is comparable to differences in FDPB due to different surface treatments or different force field parameterizations. Side chain conformation free energies of aspartate and asparagine are in qualitative agreement with explicit solvent simulations, while 74 conformations of a surface loop in the protein Ras are accurately ranked compared to FDPB. Preliminary results for solvation free energies of small alkane and polar solutes suggest that a recent Gaussian model could be used in combination with analytical continuum electrostatics to treat nonpolar interactions. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 322–335, 1999 相似文献
18.
19.
The Fourier transform infrared spectroscopy is used to study the binary mixtures of F68/water and F68/p-xylene. The results show that in aqueous solution the wavenumbers of the two bands associated to the O-H and C-O-C vibrations are inversely proportional. This can be explained by the fact that the dehydrated methylene groups approach by the hydrophobic interaction to form hydrophobic cores, which lead to a breakdown of the hydrogen bond between water and C-O-C. The spectrum associated to the binary mixture F68/p-xylene show that F68 exists as nonassociated molecules (unimers) at room temperature. The results of the ternary mixtures of the F68/p-xylene/water show a change in the spectra on the level of the vibrations of the O-H and C-O-C groups which is attributed to the change of structure following the variation of the concentration from unimers to large aggregates. 相似文献
20.
Lu H Akgun B Wei X Li L Satija SK Russell TP 《Langmuir : the ACS journal of surfaces and colloids》2011,27(20):12443-12450
In situ neutron reflectivity was used to study thermally induced structural changes of the lamellae-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films floating on the surface of an ionic liquid (IL). The IL, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, is a nonsolvent for PS and a temperature-tunable solvent for P2VP, and, as such, micellization can be induced at the air-IL interface by changing the temperature. Transmission electron microscopy and scanning force microscopy were used to investigate the resultant morphologies of the micellar films. It was found that highly ordered nanostructures consisting of spherical micelles with a PS core surrounded by a P2VP corona were produced. In addition, bilayer films of PS homopolymer on top of a PS-b-P2VP layer also underwent micellization with increasing temperature but the micellization was strongly dependent on the thickness of the PS and PS-b-P2VP layers. 相似文献