首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
[Cd(mu2-N,O-p-NH2C6H4SO3)2(H2O)2]n (1) is a layered coordination compound. The solid-vapor reactions between crystalline 1 and a series of volatile amines were investigated and the corresponding amine adducts were characterized by EA, TGA, PXRD and IR. Among them, the C2H5NH2 and C3H7NH2 adducts, namely [Cd(C2H5NH2)4(H2O)2](H2NC6H4SO3)2 (3) and [Cd(C3H7NH2)4(O-p-H2NC6H4SO3)2].C3H7NH2 (4), grew into single crystals in situ from the solid-vapor reaction processes and their crystal structures were characterized. In both cases, 4 mol equiv. of amine molecules coordinate to Cd(II) via replacing the N,O-p-NH2C6H4SO3 ligands or coordinated water molecules. The single-phase product suggests that the solid-vapor reaction between the metal sulfonate and volatile alkylamines could be used as a green process to synthesize monoamine-coordinated Cd(II) complexes without any solvent and routine separation. Finally, the substitution reaction is reversible at room conditions and selective for primary alkylamines.  相似文献   

2.
Hydrothermal reactions of 1,2,4-triazole with zinc and cadmium salts have yielded 10 structurally unique materials of the M(II)/trz/Xn- system, with M(II)=Zn and Cd and Xn-=F-, Cl-, Br-, I-, OH-, NO3-, and SO(4)2- (trz=1,2,4-triazolate). Of the zinc-containing phases, [Zn(trz)2] (1), [Zn2(trz)3(OH)].3H2O (3.3H2O), and [Zn2(trz)(SO4)(OH)] (4) are three-dimensional, while [Zn(trz)Br] (2) is two-dimensional. All six cadmium phases, [Cd3(trz)3F2(H2O)].2.75H2O (5.2.75H2O), [Cd2(trz)2Cl2(H2O)] (6), [Cd3(trz)3Br3] (7), [Cd2(trz)3I] (8), [Cd3(trz)5(NO3)(H2O)].H2O (9.H2O), and [Cd8(trz)4(OH)2(SO4)5(H2O)] (10), are three-dimensional. In all cases, the anionic components Xn- participate in the framework connectivity as bridging ligands. The structural diversity of these materials is reflected in the variety of coordination polyhedra displayed by the metal sites: tetrahedral; trigonal bipyramidal; octahedral. Structures 3, 5, and 7-9 exhibit two distinct polyhedral building blocks. The materials are also characterized by a range of substructural components, including trinuclear and tetranuclear clusters, adamantoid cages, chains, layers, and complex frameworks.  相似文献   

3.
Utilizing 3,5-bis(x-pyridyl)-1,2,4-triazole (x-Hpytz, x = 3; x = 4) as multidentate ligands, six novel coordination polymers with Zn(II) or Cd(II) metal ions were prepared: [Zn(3-pytz)(0.5)(OH)(0.5)Cl](n) (1, 1D ladder), {[Zn(3-Hpytz)(H(2)O)(4)] [Zn(3-Hpytz)(H(2)O)(3)·SO(4)]SO(4)·5H(2)O}(n) (2·5H(2)O, 1D chain), [Cd(3-Hpytz)(SO(4))](n) (3, 3D framework), {[Cd(3-Hyptz)SO(4)·3H(2)O]·2H(2)O}(n) (4·2H(2)O, 1D chain), [Zn(4-pytz)Cl](n) (5, 3D framework) and [Zn(2)(4-pytz)(SO(4))(OH)](n) (6, 3D framework). All compounds were obtained from hydrothermal reactions, with the exception of compound 4 which was obtained by solvent diffusion at room temperature. All compounds were characterized by FTIR, elemental analysis and TGA analysis and their structures were determined by X-ray diffraction. All compounds exhibited substantial thermal stability and showed photofluorescent properties that resulted from ligand π-π* transition.  相似文献   

4.
Reactions of [MCl2(tmeda)] with potassium salts of monoselenocarboxylic acids gave complexes of the general formula [M(SeCOR)2(tmeda)] (M = Zn, Cd; R = Ph, Tol; Tol = C6H4-p-CH3; tmeda = Me2NCH2CH2NMe2). The analogous mercury complexes were unstable at room temperature and afforded HgSe nanoparticles during the course of reaction. All the complexes were characterized by elemental analysis, IR, UV-vis, NMR (1H, 13C, 77Se, 113Cd) data. The X-ray structural analysis of [Cd(SeCOPh)2(tmeda)] revealed that the complex is a discrete monomer having an approximate tetrahedral coordination environment around the central metal atom with monodentate (Se-bonded) selenocarboxylates. Thermal behavior of these complexes was studied by TG analysis. Pyrolysis in a furnace or in HDA (hexadecylamine) gave MSe nanoparticles, which were characterized by XRD, EDAX, SEM and absorption spectroscopy.  相似文献   

5.
The reaction of cis-[Pt(NH3)2(3-pyhaH)2]2+ (3-pyhaH = 3-pyridinehydroxamic acid) and cis-[Pt(NH3)2(4-pyhaH)2]2+ (4-pyhaH = 4-pyridinehydroxamic acid) with Cu(II), Ni(II) or Zn(II) in aqueous solution affords novel heterobimetallic pyridinehydroxamate-bridged complexes, {cis-[Pt(NH3)2(mu-3-pyha)M(mu-3-pyha)].SO4.xH2O}n and {cis-[Pt(NH3)2(mu-4-pyha)M(mu-4-pyha)].SO4.xH2O}n respectively. The crystal and molecular structure of one of these, {cis-[Pt(NH3)2(mu-3-pyha)Cu(mu-3-pyha)]SO4.8H2O}n 3a, has been determined and was found to be a novel heterobimetallic wave-like coordination polymer, the structure of which contains interlinked pyridinehydroxamate-bridged repeating units of Pt(II) and Cu(II) ions in slightly distorted square-planar N4 and O4 coordination environments respectively and extensive hydrogen-bonding through the Pt ammines and the deprotonated hydroxamate O and via the O of the SO4(2-) counterions and the H(N) of the hydroxamate moiety. Spectrophotometric and speciation studies on the other heterobimetallic systems confirm that very similar species are being formed in solution and based on elemental analysis and spectroscopic results analogous complexes are formed in the solid-state. In this paper, we report the first examples of coordination polymers incorporating both Pt(II)/Cu(II), Pt(II)/Ni(II) and Pt(II)/Zn(II) and containing pyridinehydroxamic acids as bridging scaffolds.  相似文献   

6.
The molybdenum(II) and tungsten(II) complexes [MCp(2)L] (Cp = eta(5)-cyclopentadienyl; L = C(2)H(4), CO) react with perfluoroalkyl iodides to give a variety of products. The Mo(II) complex [MoCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide or perfluorobenzyl iodide with loss of ethylene to give the first examples of fluoroalkyl complexes of Mo(IV), MoCp(2)(CF(2)CF(2)CF(2)CF(3))I (8) and MoCp(2)(CF(2)C(6)F(5))I (9), one of which (8) has been crystallographically characterized. In contrast, the CO analogue [MoCp(2)(CO)] reacts with perfluorobenzyl iodide without loss of CO to give the crystallographically characterized salt, [MoCp(2)(CF(2)C(6)F(5))(CO)](+)I(-) (10), and the W(II) ethylene precursor [WCp(2)(C(2)H(4))] reacts with perfluorobenzyl iodide without loss of ethylene to afford the salt [WCp(2)(CF(2)C(6)F(5))(C(2)H(4))](+)I(-) (11). These observations demonstrate that the metal-carbon bond is formed first. In further contrast the tungsten precursor [WCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide, perfluoro-iso-propyl iodide, and pentafluorophenyl iodide to give fluoroalkyl- and fluorophenyl-substituted cyclopentadienyl complexes WCp(eta(5)-C(5)H(4)R(F))(H)I (12, R(F) = CF(2)CF(2)CF(2)CF(3); 15, R(F) = CF(CF(3))(2); 16, R(F) = C(6)F(5)); the Mo analogue MoCp(eta(5)-C(5)H(4)R(F))(H)I (14, R(F) = CF(CF(3))(2)) is obtained in similar fashion. The tungsten(IV) hydrido compounds react with iodoform to afford the corresponding diiodides WCp(eta(5)-C(5)H(4)R(F))I(2) (13, R(F) = CF(2)CF(2)CF(2)CF(3); 18, R(F) = CF(CF(3))(2); 19, R(F) = C(6)F(5)), two of which (13 and 19) have been crystallographically characterized. The carbonyl precursors [MCp(2)(CO)] each react with perfluoro-iso-propyl iodide without loss of CO, to afford the exo-fluoroalkylated cyclopentadiene M(II) complexes MCp(eta(4)-C(5)H(5)R(F))(CO)I (21, M = Mo; 22, M = W); the exo-stereochemistry for the fluoroalkyl group is confirmed by an X-ray structural study of 22. The ethylene analogues [MCp(2)(C(2)H(4))] react with perfluoro-tert-butyl iodide to yield the products MCp(2)[(CH(2)CH(2)C(CF(3))(3)]I (25, M = Mo; 26, M = W) resulting from fluoroalkylation at the ethylene ligand. Attempts to provide positive evidence for fluoroalkyl radicals as intermediates in reactions of primary and benzylic substrates were unsuccessful, but trapping experiments with CH(3)OD (to give R(F)D, not R(F)H) indicate that fluoroalkyl anions are the intermediates responsible for ring and ethylene fluoroalkylation in the reactions of secondary and tertiary fluoroalkyl substrates.  相似文献   

7.
Zhang  Y.  Li  L.-L.  Feng  S.-S.  Feng  T.  Dong  W.-K. 《Russian Journal of General Chemistry》2021,91(10):2069-2078
Russian Journal of General Chemistry - Two new phenoxo-bridged heterobimetallic [Zn(II)2M(II)] (M = Sr and Ba) salamo-based complexes, [{Zn(L)(μ2-OAc)}2Sr]·0.33CH3OH·H2O (1) and...  相似文献   

8.
The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes.  相似文献   

9.
A series of Zn(II), Cd(II), Co(II), Co(III) and Mn(III) complexes with the Schiff base [(CH3)2NCH2CH2N=CHC6H3(OH)(OMe)], LH, derived from 2-dimethylaminoethylamine and o-vanillin, has been synthesised and structures of all the products have been established by X-ray crystallography. In the cases of zinc and cadmium, dimeric complexes [Zn(LH)2(NCS)] [Zn2(L)(mu(1,1)-CH3COO)(NCS)3] (1), [Cd2(L)2(Cl)2] (2) and [Cd2(L)2(NCS)2] (3), and for cobalt and manganese, monomeric complexes [Co(LH)2(NCS)]2 [Co(NCS)4] (4), [Co(LH)2(NCS)]ClO4 (5), [Co(L)(N3)(o-vanillinate)] x 0.5 MeOH (6) and [Mn(LH)2(MeOH)2](ClO4)3 (7), are formed with various terminal ligands. All the complexes have been characterised by elemental analysis and IR spectra. UV-Vis and NMR spectroscopy, magnetic, and electrochemical studies, were also carried out where feasible. The Schiff base functions as a bi-, tri- or tetra-dentate chelating agent and coordinates via the protonated or deprotonated phenolic oxygen, amine and imine nitrogens, and only in case of 1 with the methoxy oxygen atoms, to the metal ion leading to the formation of mono- or bi-metallic complexes.  相似文献   

10.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

11.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

12.
Liquid-liquid extraction of Co(II) and Zn(II) by methylisobutylcetone (MIBK) has been studied systematically from NH(4)SCN/H(2)SO(4) media. The influence of sulphuric acid concentration on the percentage of extraction of Co(II) and Zn(II) has been discussed. It is shown that sulphuric acid concentration has not the same effect on distribution curves of Co(II) and Zn(II). Thus, it is possible to have a separation of Zn(II) of Co(II) when [NH(4)SCN] is 0.5 mol l(-1) and [H(2)SO(4)] is about 2 mol l(-1). Under these conditions the separation factor (S(Zn/Co)) is around 580. The results are treated in terms of thermodynamic activities in aqueous phase, to determine the composition of the extracted complexes (M:SCN(-)) and to discuss the extraction mechanism.  相似文献   

13.
Takuma M  Ohki Y  Tatsumi K 《Inorganic chemistry》2005,44(17):6034-6043
The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo-Cu complex. In this paper, the synthesis and characterization of dinuclear Mo-Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (8-13) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.  相似文献   

14.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

15.
To evidentiate the role of the nature of sulfonate ancillary ligands on the value of the quadratic hyperpolarizability of Zn(II) complexes with stilbazole-like ligands, the second-order nonlinear optical (NLO) properties of [ZnY(2)(4,4'-trans-NC5H4CH=CHC6H4NMe2)2] complexes (Y = CF3SO3, CH3SO3, or p-CH3C6H4SO3) are investigated. By working at relatively high concentrations (>3 x 10(-4) M), the positive effect of the triflate ligand remains unique while, with nonfluorinated sulfonate ligands, the second-order NLO response is comparable to that of the related complexes with acetate or trifluoroacetate as ancillary ligands. However, at dilutions higher than 10(-4) M, all of the sulfonate complexes reach huge quadratic hyperpolarizabilities because of solvolysis with the formation of cationic species such as [ZnY(4,4'-trans-NC5H4CH=CHC6H4NMe2)2]+, characterized by a large second-order NLO response. This view is supported by careful conductivity measurements. The same behavior occurs if 4,4'-trans-NC5H4CH=CHC6H4NMe2 is substituted by 4,4'-trans,trans-NC5H4(CH=CH)2C6H4NMe2.  相似文献   

16.
A series of heterometal cyclic tetranuclear complexes [Cu(II)LM(II)(hfac)](2) (M(II) = Zn (1), Cu (2), Ni (3), Co (4), Fe(5), and Mn (6)) have been synthesized by the assembly reaction of K[CuL] and [M(II)(hfac)(2)(H(2)O)(2)] with a 1:1 mole ratio in methanol, where H(3)L = 1-(2-hydroxybenzamido)-2-((2-hydroxy-3-methoxybenzylidene)amino)ethane and Hhfac = hexafluoroacetylacetone. The crystal structures of 2, 4, and [Cu(II)LMn(II)(acac)](2) (6a) (Hacac = acetylacetone) were determined by single-crystal X-ray analyses. Each complex has a cyclic tetranuclear Cu(II)(2)M(II)(2) structure, in which the Cu(II) complex functions as a "bridging ligand complex", and the Cu(II) and M(II) ions are alternately arrayed. One side of the planar Cu(II) complex coordinates to one M(II) ion at the two phenoxo and the methoxy oxygen atoms, and the opposite side of the Cu(II) complex coordinates to another M(II) ion at the amido oxygen atom. The temperature-dependent magnetic susceptibilities revealed spin states of S(M) = 0, 1/2, 1, 3/2, 2, and 5/2 for the Zn(II), Cu(II), Ni(II), Co(II), Fe(II), and Mn(II) ions, respectively. Satisfactory fittings to the observed magnetic susceptibility data were obtained by assuming a rectangular arrangement with two different g-factors for the Cu(II) and M(II) ions, two different isotropic magnetic exchange interactions, J(1) and J(2), between the Cu(II) and M(II) ions, and a zero-field splitting term for the M(II) ion. In all cases, the antiferromagnetic coupling constants were found for both exchange interactions suggesting nonzero spin ground states with S(T) = 2/S(M) - S(Cu)/, which were confirmed by the analysis of the field-dependent magnetization measurements.  相似文献   

17.
The reactions of zinc(II) acetate with a variety of 2-substituted benzothiazolines afforded tetrahedral mononuclear complexes with a N 2S 2 donor set, [Zn(RPhC(H) NC 6H 4 S) 2]. The obtained zinc(II) complexes can be divided into three groups based on the characteristics of the absorption spectra; Group 1 (R = 2,4,6-triMe ( 1), 2,6-diCl ( 2)) showing an intense band at 250-300 nm and a weak band at 400-450 nm, Group 2 (R = 4-Cl ( 3), H ( 4), 4-Et ( 5), 4-OMe ( 6)) showing two intense bands at 250-300 nm and a weak band at 400-450 nm, and Group 3 (R = 4-NMe 2 ( 7), 4-NEt 2 ( 8)) showing an intense band at 250-300 nm and two very intense bands at 350-450 nm. The Group 2 and Group 3 complexes exhibited a strong emission on irradiating with ultraviolet light while the Group 1 complexes were not emissive at room temperature. However, all the zinc(II) complexes were luminescent in CH 2Cl 2/toluene glass at 77 K, and their emission peak energies were found to correlate with the Hammett constant of the substituent at para position of a pendent phenyl ring in each complex. Similar reactions of cadmium(II) acetate with 2-substituted benzothiazolines were also carried out to synthesize corresponding cadmium(II) complexes. While [Cd(RPhC(H) NC 6H 4 S) 2] (R = 2,4,6-triMe ( 9)) with bulky substituents at ortho positions of a pendent phenyl ring had a tetrahedral mononuclear structure, other cadmium(II) complexes [Cd 2(RPhC(H) NC 6H 4 S) 4] (R = 4-Et ( 10), 4-OMe ( 11), 4-NMe 2 ( 12)) possessed S-bridged dinuclear structures. These cadmium(II) complexes, which are assumed to have a mononuclear structure in solution, showed photophysical properties similar to those of the corresponding zinc(II) complexes.  相似文献   

18.
A number of complexes [M(4-MePy)n (NCS)2], where M=Co(II), Ni(II), Zn(II), Cd(II); n=2 or 4 have been synthesized and phase diagrams [M(4-MePy)2(NCS)2]-4-MePy have been studied. The forming compounds have been obtained and described with the help of IR-spectroscopy and thermal analysis. The structure of a molecular type with variable section channels, filled by two types guest-molecules (by a water molecule in the narrow part of the channel and by two 4-methylpyridine molecules in the broad part of the channel, with a total ratio guest: host being 1:1) for [Cd(4-MePy)4 (NCS)2]·0.67(4-MePy)·0.33H2O has been defined by X-ray method. This clathrate is isostructural (X-ray powder diffractogram) to the anhydrous compound [Cd(4-MePy)4 (NCS)2]·0.67(4-MePy).  相似文献   

19.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

20.
Reaction of group 12 metal halides in ethanol with the thiosemicarbazones 2-acetylpyridine-4N-ethylthiosemicarbazone (H4EL) and 2-acetylpyridine-N-oxide-4N-ethylthiosemicarbazone (H4ELO) produced the compounds [M(H4EL)X2] and [M(H4ELO)X2] [M=Zn(II), Cd(II) or Hg(II), X=Cl, Br or I]. The ligands and complexes were characterized by elemental analysis and by IR and NMR (1H, 13C, 113Cd, 199Hg) spectroscopy, and the structures of H4ELO·H2O and the complexes [Cd(H4EL)I2]·2DMSO, [Hg(H4EL)Br2]–DMSO, [Zn(H4ELO)Cl2] and [Zn(H4ELO)Br2] were determined by X-ray diffraction. The metal centers in the complexes have coordination number five, H4EL and H4ELO behaving as neutral NNS- and ONS-tridentate ligands, respectively. The coordination polyhedra are close to tetragonal pyramids, the degree of distortion towards trigonal bipyramids was estimated by τ calculation. Against the pathogenic fungi Aspergillus niger and Paecilomyces variotii, the mercury complexes of H4ELO had activities that at some doses exceeded that of nystatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号