首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speed distributions of spectroscopically selected CO photoproducts of 308 nm ketene photodissociation have been measured by dc sliced ion imaging. Structured speed distributions are observed that match the clumps and gaps in the singlet CH2 rotational density of states. The effects of finite time gates in sliced ion imaging are important for the accurate treatment of quasicontinuous velocity distributions extending into the thickly sliced and fully projected regime, and an inversion algorithm has been implemented for the special case of isotropic fragmentation. With accurate velocity calibration and careful treatment of the velocity resolution, the new method allows us to characterize the coincident rotational state distribution of CH2 states as a smoothly varying deviation from an unbiased phase space theory (PST) limit, similar to a linear-surprisal analysis. High-energy rotational states of CH2 are underrepresented compared to PST in coincidence with all detected CO rotational states. There is no evidence for suppression of the fastest channels, as had been reported in two previous studies of this system by other techniques. The relative contributions of ground and first vibrationally excited singlet CH2 states in coincidence with selected rotational states of CO (upsilon=0) are well resolved and in remarkably good agreement with PST, despite large deviations from the PST rotational distributions in the CH2 fragments. At 308 nm, the singlet CH2 (upsilon2=0) and (upsilon2=1) channels are 2350 and 1000 cm(-1) above their respective thresholds. The observed vibrational branching is consistent with saturation at increasing energies of the energy-dependent suppression of rates with respect to the PST limit, attributed to a tightening variational transition state.  相似文献   

2.
The photodissociation of acetaldehyde in the molecular channel yielding CO and CH(4) at 248 nm has been studied, probing different rotational states of the CO(nu = 0) fragment by slice ion imaging using a 2+1 REMPI scheme at around 230 nm. From the slice images, clear evidence of the co-existence of two different mechanisms has been obtained. One of the mechanisms is consistent with the well-studied conventional transition state in which CO products appear rotationally excited, and the second is consistent with a roaming mechanism. This roaming mechanism is characterized by a low rotational energy disposal into the CO fragment as well as by a very low kinetic energy release, corresponding to a high internal energy in the CH(4) counter-fragment.  相似文献   

3.
A detailed study of the photoinduced molecular elimination pathway of formaldehyde on the ground state surface was carried out using high-resolution dc slice ion imaging. Detailed correlated H(2) rovibrational and CO rotational product quantum state distributions were measured by imaging spectroscopically selected CO velocity distributions following photodissociation at energies from approximately 1800 to approximately 4100 cm(-1) above the barrier to molecular elimination. Excitation to the 2(1)4(1), 2(1)4(3), 2(2)4(1), 2(2)4(3), and 2(3)4(1) bands of H(2)CO are reported here. The dependence of the product rovibrational distributions on excitation energy are discussed in light of a dynamical model which has been formulated to describe the strong product state correlations observed.  相似文献   

4.
The spatial distribution of the neutral gas temperature in a dc and rf magnetron sputter discharge (boron target) with pure nitrogen was estimated by fitting the rotational spectra of the first negative system of the nitrogen molecule ion. The rotational levels of the excited nitrogen molecule ion are populated mainly by two mechanisms. Only one of them leads to a rotational level distribution corresponding to the neutral gas temperature. Therefore, fitting of the spectra assuming a single Boltzmann distribution of the rotational levels often leads to unreliable and too high rotational temperatures and the spectra have to be fitted using a two-temperature model. Beside the neutral gas temperature the value of the second temperature as well as the contribution of the higher rotationally excited molecules to the spectra are studied in more detail. The dependence of the spatial distribution of the neutral gas temperature on pressure and discharge power was investigated. Additionally, the results are compared to rotational temperatures obtained by fitting the spectra assuming a single Boltzmann distribution of the rotational levels. These rotational temperatures often do not reflect the neutral gas temperature and wrong dependences would be concluded.  相似文献   

5.
The photodissociation dynamics of isocyanic acid (HNCO) has been studied by the timesliced velocity map ion imaging technique at 193 nm. The NH(aΔ) products were measured via (2+1) resonance enhanced multiphoton ionization. Images have been accumulated for the NH(aΔ) rotational states in the ground and vibrational excited state (v=0 and 1). The center-of-mass translational energy distribution derived from the NH(aΔ) images implies that the CO vibrational distributions are inverted for most of the measured NH(v|j) internal states. The anisotropic product angular distribution observed indicates a rapid dissociation process for the N-C bond cleavage. A bimodal rotational state distribution of CO(v) has been observed, this result implies that isocyanic acid dissociates in the S1 state in two different pathways.  相似文献   

6.
An apparatus for detailed study of quantum state-resolved inelastic energy transfer dynamics at the gas-liquid interface is described. The approach relies on supersonic jet-cooled molecular beams impinging on a continuously renewable liquid surface in a vacuum and exploits sub-Doppler high-resolution laser absorption methods to probe rotational, vibrational, and translational distributions in the scattered flux. First results are presented for skimmed beams of jet-cooled CO(2) (T(beam) approximately 15 K) colliding at normal incidence with a liquid perfluoropolyether (PFPE) surface at E(inc) = 10.6(8) kcal/mol. The experiment uses a tunable Pb-salt diode laser for direct absorption on the CO(2) nu(3) asymmetric stretch. Measured rotational distributions in both 00(0)0 and 01(1)0 vibrational manifolds indicate CO(2) inelastically scatters from the liquid surface into a clearly non-Boltzmann distribution, revealing nonequilibrium dynamics with average rotational energies in excess of the liquid (T(s) = 300 K). Furthermore, high-resolution analysis of the absorption profiles reveals that Doppler widths correspond to temperatures significantly warmer than T(s) and increase systematically with the J rotational state. These rotational and translational distributions are consistent with two distinct gas-liquid collision pathways: (i) a T approximately 300 K component due to trapping-desorption (TD) and (ii) a much hotter distribution (T approximately 750 K) due to "prompt" impulsive scattering (IS) from the gas-liquid interface. By way of contrast, vibrational populations in the CO(2) bending mode are inefficiently excited by scattering from the liquid, presumably reflecting much slower T-V collisional energy transfer rates.  相似文献   

7.
We present a detailed experimental and theoretical investigation of formaldehyde photodissociation to H(2) and CO following excitation to the 2(1)4(1) and 2(1)4(3) transitions in S(1). The CO velocity distributions were obtained using dc slice imaging of single CO rotational states (v=0, j(CO)=5-45). These high-resolution measurements reveal the correlated internal state distribution in the H(2) cofragments. The results show that rotationally hot CO (j(CO) approximately 45) is produced in conjunction with vibrationally "cold" H(2) fragments (v=0-5): these products are formed through the well-known skewed transition state and described in detail in the accompanying paper. After excitation of formaldehyde above the threshold for the radical channel (H(2)CO-->H+HCO) we also find formation of rotationally cold CO (j(CO)=5-28) correlated to highly vibrationally excited H(2) (v=6-8). These products are formed through a novel mechanism that involves near dissociation followed by intramolecular H abstraction [D. Townsend et al., Science 306, 1158 (2004)], and that avoids the region of the transition state entirely. The dynamics of this "roaming" mechanism are the focus of this paper. The correlations between the vibrational states of H(2) and rotational states of CO formed following excitation on the 2(1)4(3) transition allow us to determine the relative contribution to molecular products from the roaming atom channel versus the conventional molecular channel.  相似文献   

8.
Ion imaging coupled with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) technique is employed to probe CO(v″ = 0) fragments at different rotational levels following photodissociation of methyl formate (HCOOCH(3)) at 234 nm. When the rotational level, J″(CO), is larger than 24, only a broad translational energy distribution extending beyond 70 kcal mol(-1) with an average energy of about 23 kcal mol(-1) appears. The dissociation process is initiated on the energetic ground state HCOOCH(3) that surpasses a tight transition state along the reaction coordinate prior to breaking into CO + CH(3)OH. This molecular dissociation pathway accounts for the CO fragment with larger rotational energy and large translational energy. As J″(CO) decreases, a bimodal distribution arises with one broad component and the other sharp component carrying the average energy of only 1-2 kcal mol(-1). The branching ratio of the sharp component increases with a decrease of J″(CO); (7.3 ± 0.6)% is reached as the image is probed at J″(CO) = 10. The production of a sharp component is ascribed to a roaming mechanism that has the following features: a small total translational energy, a low rotational energy partitioning in CO, but a large internal energy in the CH(3)OH co-product. The internal energy deposition in the fragments shows distinct difference from those via the conventional transition state.  相似文献   

9.
We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 degrees to the orientation direction of the OCS molecules. The CO(nu=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO(nu=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting beta parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.  相似文献   

10.
Photodissociation studies using ion imaging are reported, measuring the coherence of the polarization of the S((1)D(2)) fragment from the photolysis of single-quantum state-selected carbonyl sulfide (OCS) at 223 and 230 nm. A hexapole state-selector focuses a molecular beam of OCS parent molecules in the ground state (nu2=0mid R:JM=10) or in the first excited bending state (nu2=1mid R:JlM=111). At 230 nm photolysis the Im[a1 (1)(parallel, perpendicular)] moment for the fast S(1D2) channel increases by about 50% when the initial OCS parent state changes from the vibrationless ground state to the first excited bending state. No dependence on the initial bending state is found for photolysis at 223 nm. We observe separate rings in the slow channel of the velocity distribution of S(1D2) correlating to single CO(J) rotational states. The additional available energy for photolysis at 223 nm is found to be channeled mostly into the CO(J) rotational motion. An improved value for the OC-S bond energy D0=4.292 eV is reported.  相似文献   

11.
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the (1)B(1) excited state and (1)A(2) state along the C(S)-I coordinate.  相似文献   

12.
Classical differential cross sections, rotational energy transfer distributions at specified scattering angles and the first moments of the rotational energy transfer distributions are calculated for two ion—molecule systems: K+ ?CSCl and Li+ ?CO. The deflection angles and change in angular momentum are calculated using classical perturbation scattering theory (CPST). Monte Carlo techniques are then used to calculate the orientation averaged total differential cross sections and the rotational energy transfer distributions. Results are compared with experiment and agreement is found to be satisfactory. These two systems represent two extremes in anisotropy. For Li+ ?CO a strong classical rainbow peak is still seen in the differential cross section, while in the K+ ?CSCl system the rainbow is complete quenched. In the rotational energy transfer distributions of both systems, rotational rainbow peaks are clearly observed. The calculations also predict a leveling off of the first moment of the rotational energy transfer distribution at high angles, corresponding to the transition to repulsive scattering. On the basis of these results some comments are made on the nature of classical rainbow scattering for anisotropic systems.  相似文献   

13.
The photodissociation of isocyanic acid (HNCO) on the ˉrst excited singlet state following the excitation at 210 nm was investigated with an ion velocity slice imaging technique by probing the CO fragment. It was found from the (2+1) resonance-enhanced multi-photon ionization (REMPI) spectrum that the CO fragments are rotationally hot with population up to Jmax=50. The velocity imagings of the CO fragments at JCO=30 and 35 indicate that formation of NH(a1¢)+CO(X1§+, v=0) is the predominant dissociation channel at 210 nm. From analysis of the CO fragment translational energy distributions, the NH(a1¢) fragment was observed to be rotationally cold, about half of the available energy was partitioned into the translational motion of fragments after dissociation, and the NH(a1¢)+CO(X1§+) dissociation threshold was determined at 42738§30 cm?1. From analysis of the CO fragment angular distributions, the dissociationanisotropy parameter ˉ was found to be negative, and increasing with the rotational quantum number of the NH fragment, i.e., from ?0.75 at JNH=2-4 to ?0.17 at JNH=11. Impulsive direct and vertical dissociation process of HNCO on the singlet state at 210 nm was conˉrmed experimentally. A classical impact dissociation model was employed to explain the dependence of the ˉ value on the rotational excitation of the NH fragment.  相似文献   

14.
《Chemical physics letters》1985,117(6):555-560
Na+CO2 differential scattering experiments at ion energies between 50 and 350 eV are reported. The measured energy-loss distribution show a pattern that is typical for spectra which could be interpreted in terms of an impulsive collision process. The structure can partly be explained as rotational rainbow peaks caused by the interaction of the Na+ ion with only the CO part of the CO2 molecule.  相似文献   

15.
Temperature-dependent photoelectron spectra of benzoate anion (C6H5CO2(-)) and its three methyl-substituted isomers (o-, m-, p-CH3C6H4CO2(-)) have been obtained using a newly developed low-temperature photoelectron spectroscopy apparatus that features an electrospray source and a cryogenically controlled ion trap. Detachment channels due to removing electrons from the carboxylate group and benzene ring pi electrons were distinctly observed. Well-resolved vibrational structures were obtained in the lower binding energy region due to the OCO bending modes, except for o-CH3C6H4CO2(-), which yielded broad spectra even at the lowest ion trap temperature (18 K). Theoretical calculations revealed a large geometry change in the OCO angles between the anion and neutral ground states, consistent with the broad ground-state bands observed for all species. A strong steric effect was observed between the carboxylate and the methyl group in o-CH3C6H4CO2(-), such that the -CO2(-) group is pushed out of the plane of the benzene ring by approximately 25 degrees and its internal rotational barrier is significantly reduced. The low rotational barrier in o-CH3C6H4CO2(-), which makes it very difficult to be cooled vibrationally, and the strong coupling between the OCO bending and CO2 torsional modes yielded the broad PES spectra for this isomer. It is shown that there is no C-H...O hydrogen bond in o-CH3C6H4CO2(-), and the interaction between the carboxylate and methyl groups in this anion is found to be repulsive in nature.  相似文献   

16.
Following collisions of O (1D) with CO, rotationally resolved emission spectra of CO (1 < or = v < or = 6) in the spectral region 1800-2350 cm(-1) were detected with a step-scan Fourier transform spectrometer. O (1D) was produced by photolysis of O3 with light from a KrF excimer laser at 248 nm. Upon irradiation of a flowing mixture of O3 (0.016 Torr) and CO (0.058 Torr), emission of CO (v < or = 6) increases with time, reaches a maximum approximately 10 micros. At the earliest applicable period (2-3 micros), the rotational distribution of CO is not Boltzmann; it may be approximately described with a bimodal distribution corresponding to temperatures approximately 8000 and approximately 500 K, with the proportion of these two components varying with the vibrational level. A short extrapolation from data in the period 2-6 micros leads to a nascent rotational temperature of approximately 10170 +/- 600 K for v = 1 and approximately 1400 +/- 40 K for v = 6, with an average rotational energy of 33 +/- 6 kJ mol(-1). Absorption by CO (v = 0) in the system interfered with population of low J levels of CO (v = 1). The observed vibrational distribution of (v = 2):(v = 3):(v = 4):(v = 5):(v = 6) = 1.00:0.64:0.51:0.32:0.16 corresponds to a vibrational temperature of 6850 +/- 750 K. An average vibrational energy of 40 +/- 4 kJ mol(-1) is derived based on the observed population of CO (2 < or = v < or = 6) and estimates of the population of CO (v = 0, 1, and 7) by extrapolation. The observed rotational distributions of CO (1 < or = v < or = 3) are consistent with results of previous experiments and trajectory calculations; data for CO (4 < or = v < or = 6) are new.  相似文献   

17.
Peng Li  Wai Yip Fan   《Chemical physics letters》2004,390(4-6):323-327
Tunable infrared diode laser absorption (TDLAS) and Fourier transform infrared absorption spectroscopies (FTIR) have been utilized to characterize the translational, rotational and vibrational distributions of CO in an acetone/argon DC plasma at total pressures ranging from 4 to 5 Torr and currents of 0.1–0.3 A. A broad vibrational distribution of CO was observed with gradually decreasing intensities from the fundamental band to v=12←11. When nitrogen was added to the plasma, the distribution is narrower, due to the efficient energy transfer between CO and N2 molecules. The measured translational temperature in such plasmas ranged from 400–550 K. The rotational distribution can generally be fitted to a Boltzmann distribution within each vibrational level although the rotational temperature is highest for the lowest vibrational quantum number.  相似文献   

18.
The absolute velocity-dependent alignment and orientation for S(1D2) atoms from the photodissociation of OCS at 193 nm were measured using the dc slice imaging method. Three main peaks ascribed to specific groups of high rotational levels of CO in the vibrational ground state were found, with rotationally resolved rings in a fourth slow region ascribed to weak signals associated with excited vibrational states of CO. The observed speed-dependent beta and polarization parameters support the interpretation that there are two main dissociation processes: a simultaneous two-surface (A' and A") excitation and the initial single-surface (A') excitation followed by the nonadiabatic crossing to ground state. At 193 nm photodissociation, the nonadiabatic dissociation process is strongly enhanced relative to longer wavelengths. The angle- and speed-dependent S(1D2) density matrix can be constructed including the higher order (K = 3,4) contributions for the circularly polarized dissociation light. This was explicitly done for selected energies and angles. It was found in one case that the density matrix is sensitively affected by the rank 4 terms, suggesting that the higher order contributions should not be overlooked for an accurate picture of the dissociation dynamics in this system.  相似文献   

19.
Photodissociation dynamics of phenol   总被引:1,自引:0,他引:1  
The photodissociation of phenol at 193 and 248 nm was studied using multimass ion-imaging techniques and step-scan time-resolved Fourier-transform spectroscopy. The major dissociation channels at 193 nm include cleavage of the OH bond, elimination of CO, and elimination of H(2)O. Only the former two channels are observed at 248 nm. The translational energy distribution shows that H-atom elimination occurs in both the electronically excited and ground states, but elimination of CO or H(2)O occurs in the electronic ground state. Rotationally resolved emission spectra of CO (1 相似文献   

20.
We have used oxygen Rydberg time-of-flight spectroscopy to carry out a crossed molecular beam study of the CN + O2 reaction at collision energies of 3.1 and 4.1 kcal/mol. The O(3P2) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. The translational energy distributions were broad, indicating that the NCO is formed with a wide range of internal excitation, and the angular distribution was forward-backward symmetric, indicating the participation of NCOO intermediates with lifetimes comparable to or longer than their rotational periods. Rice-Ramsperger-Kassel-Marcus modeling of the dissociation of NCOO to NCO + O suggests that Do(NC-OO) > or = 38 kcal/mol, which is consistent with several theoretical calculations. Implications for the competing CO + NO channel are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号