首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The photodissociation of N(2)O at wavelengths near 130 nm has been investigated by velocity-mapped product imaging. In all, five dissociation channels have been detected, leading to the following products: O((1)S)+N(2)(X (1)Sigma), N((2)D)+NO(X (2)Pi), N((2)P)+NO(X (2)Pi), O((3)P) + N(2)(A (3)Sigma(+) (u)), and O((3)P) + N(2)(B (3)Pi(g)). The most significant channel is to the products O((1)S) + N(2)(X(1)Sigma), with strong vibrational excitation in the N(2). The O((3)P) + N(2)(A,B):N((2)D,(2)P) + NO branching ratio is measured to be 1.4 +/- 0.5, while the N(2)(A) + O((3)P(J)):N(2)(B) + O((3)P(J)) branching ratio is determined to be 0.84+/-0.09. The spin-orbit distributions for the O((3)P(J)), N((2)P(J)), and N((2)D(J)) products were also determined. The angular distributions of the products are in qualitative agreement with excitation to the N(2)O(D (1)Sigma(+)) state, with participation as well by the (3)Pi(v) state.  相似文献   

2.
Negative ion photoelectron spectroscopy was used to elucidate the electronic and geometric structure of the gaseous Al2N/Al2N- molecules, using photodetachment wavelengths of 416 nm (2.977 eV), 355 nm (3.493 eV), and 266 nm (4.661 eV). Three electronic bands are observed and assigned to the X2Sigma(u)+ <-- X1Sigma(g)+, A2Pi(u) <-- X1Sigma(g)+, and B2Sigma(g)+ <-- X1Sigma(g)+ electronic transitions, with the caveat that one or both excited states may be slightly bent. With the aid of density functional theory calculations and Franck-Condon spectral simulations, we determine the adiabatic electron affinity of Al2N, 2.571 +/- 0.008 eV, along with geometry changes upon photodetachment, vibrational frequencies, and excited-state term energies. Observation of excitation of the odd vibrational levels of the antisymmetric stretch (nu3) suggests a breakdown of the Franck-Condon approximation, caused by the vibronic coupling between the X2Sigma(u)+ and B2Sigma(g)+ electronic states through the nu3 mode.  相似文献   

3.
The photodissociation spectra of CS(2)(+) ions via B(2)Sigma(u)(+) and C(2)Sigma(g)(+) electronic states have been studied by using two-photon excitation, where the parent CS(2)(+) ions were prepared by [3 + 1] REMPI (resonance-enhanced multiphoton ionization) at 483.2 nm from the jet-cooled CS(2) molecules. The [1 + 1] photodissociation spectrum of CS(2)(+) via the B(2)Sigma(u)(+)(upsilon(1)upsilon(2)0) <-- X(2)Pi(g,3/2)(000) transition was obtained by scanning the dissociation laser in the wavelength range of 270-285 nm and detecting the signal of both S(+) and CS(+). The [1 + 1'] photodissociation spectra of CS(2)(+) were obtained by fixing the first dissociation laser at 281.94 or 277.15 nm to excite the B(2)Sigma(u)(+) (000 or 100) <-- X(2)Pi(g,3/2)(000) transitions and scanning the second dissociation laser in the range of 606-763 nm to excite C(2)Sigma(g)(+)(upsilon(1)upsilon(2)0) <-- B(2)Sigma(u)(+)(000,100) transitions. New spectroscopic constants of nu(1) = 666.2 +/- 2.5 cm(-1), nu(2) = 363.2 +/- 1.9 cm(-1), chi(11) = -5.5 +/- 0.1 cm(-1), chi(22) = 1.6 +/- 0.1 cm(-1), chi(12) = -8.6 +/- 0.2 cm(-1), and k(122) = 44.9 +/- 2.5 cm(-1) (Fermi resonance constant) for the C(2)Sigma(g)(+) state are deduced from the [1 + 1'] photodissociation spectra. On the basis of the [1 + 1] and [1 + 1'] photodissociation spectra, the wavelength and level dependence of the product branching ratios CS(+)/S(+) has been found and the dissociation dynamics of CS(2)(+) ions via B(2)Sigma(u)(+) and C(2)Sigma(g)(+) electronic states are discussed.  相似文献   

4.
We studied the ion-pair formation dynamics of F2 at 18.385 eV (67.439 nm) using the velocity map imaging method. It was found that there are two dissociation channels corresponding to production of F(+)((1)D(2)) + F(-)((1)S(0)) and F(+)((3)P(j)) + F(-)((1)S(0)). The measured center-of-mass translational energy distribution shows that about 98% of the dissociation occurs via the F(+)((1)D(2)) channel. The measured angular distributions of the photofragments indicate that dissociation for the F(+)((3)P(j)) channel occurs via predissociation of Rydberg states converging to F(2)(+)(A(2)Pi(u)) and dissociation for the F(+)((1)D(2)) channel involves mainly a direct perpendicular transition into the ion-pair state, or X(1)Sigma(g)(+) --> 2(1)Pi(u), which is also supported by the transition dipole moment calculations .  相似文献   

5.
A low-temperature gas-phase kinetics study of the reactions and collisional relaxation processes involving C2(X1Sigma(g)+) and C2(a3Pi(u)) in collision with O2 and NO partners at temperatures from 300 to 24 K is reported. The experiments employed a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. The C2 species were created using pulsed laser photolysis at 193 nm of mixtures containing C2Cl4 diluted in N2, Ar, or He carrier gas. C2(X1Sigma(g)+) molecules were detected via pulsed laser-induced fluorescence in the (D1Sigma(u)+ <-- X1Sigma(g)+) system, and C2(a3Pi(u)) molecules were detected via pulsed laser-induced fluorescence in the (d 3Pi(g) <-- a 3Pi(u)) system. Relaxation of 3C2 by intersystem crossing induced by oxygen was measured at temperatures below 200 K, and it was found that this process remains very efficient in the temperature range 50-200 K. Reactivity of C2(X1Sigma(g)+) with oxygen became very inefficient below room temperature. Using these two observations, it was found to be possible to obtain the C2(X1Sigma(g)+) state alone at low temperatures by addition of a suitable concentration of O2 and then study its reactivity with NO without any interference coming from the possible relaxation of C2(a3Pi(u)) to C2(X1Sigma(g)+) induced by this reagent. The rate coefficient for reaction of C2(X1Sigma(g)+) with NO was found to be essentially constant over the temperature range 36-300 K with an average value of (1.6 +/- 0.1) x 10(-10) cm3 molecule(-1) s(-1). Reactivity of C2(a3Pi(u)) with NO was found to possess a slight negative temperature dependence over the temperature range 50-300 K, which is in very good agreement with data obtained at higher temperatures.  相似文献   

6.
The absorption spectrum of the H(2) molecule was studied at high resolution in the 81-72 nm spectral range. A detailed analysis of the D(') (1)Pi(u)-->X (1)Sigma(g) (+) electronic band system is reported. In the spectrum, more than 70 new lines were assigned. For wavelengths longer than 75 nm, the D(') (1)Pi(u) (+) and (1)Pi(u) (-) components show a clearly different behavior: Tauhe (1)Pi(u) (+) one dissociates into H(1s)+H(n=2) whereas the (1)Pi(u) (-) one leads to molecular fluorescence. For shorter wavelengths, both components are predissociated into H(1s)+H(n=3). The predissociation yields, the dissociation widths, and the absolute values of the transition probabilities were measured over the vibrational progression from v(')=3 to 17, i.e., up to the dissociation limit. The comparison between these absolute transition probabilities and the values calculated in the adiabatic and nonadiabatic approximations demonstrates clearly the importance of nonadiabatic couplings.  相似文献   

7.
Nonadiabatic theory of molecular spectra of diatomic molecules is presented. It is shown that in the fully nonadiabatic framework, the rovibrational wave functions describing the nuclear motions in diatomic molecules can be obtained from a system of coupled differential equations. The rovibrational wave functions corresponding to various electronic states are coupled through the relativistic spin-orbit coupling interaction and through different radial and angular coupling terms, while the transition intensities can be written in terms of the ground state rovibrational wave function and bound rovibrational wave functions of all excited electronic states that are electric dipole connected with the ground state. This theory was applied in the nearly exact nonadiabatic calculations of energy levels, line positions, and intensities of the calcium dimer in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states. The excited state potentials were computed using a combination of the linear response theory within the coupled-cluster singles and doubles framework for the core-core and core-valence electronic correlations and of the full configuration interaction for the valence-valence correlation, and corrected for the one-electron relativistic terms resulting from the first-order many-electron Breit theory. The electric transition dipole moment governing the A (1)Sigma(u) (+)<--X (1)Sigma(g) (+) transitions was obtained as the first residue of the frequency-dependent polarization propagator computed with the coupled-cluster method restricted to single and double excitations, while the spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction wave functions restricted to single and double excitations. Our theoretical results explain semiquantitatively all the features of the observed Ca(2) spectrum in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states.  相似文献   

8.
The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.  相似文献   

9.
The absorption cross-sections at room temperature are reported for the first time, of Br2 vapor in overlapping bound-free and bound-bound transition of A(3)pi1u <-- Xsigma(g)+, X(1)pi1u <-- X(1)sigma(g)+ and B(3)pi0u <-- X(1)sigma(g)+, using cavity ring down spectroscopy (CRDS) technique. We reported here, the A(3)pi1u <-- X(1)sigma(g)+, transition is included along with the two stronger X(1)pi1u <-- X(1)sigma(g)+ and B(3)pi0u <-- X(1)sigma(g) transitions of Br2. We obtained discrete absorption cross-section in the rotational structure, the continuum absorption cross-sections, and were also able to measure the absorption cross-section in separate contribution of A(3)pi1u <-- X(1)sigma(g)+, (1)pi1u <-- X(1)sigma(g)+, and B(3)pi0u <-- X(1)sigma(g)+ transitions using CRDS method to use quantum yield of Br*((2)P(1/2)). We obtained absorption cross-section order 10(-19) cm2 and detection 10(13) molecule cm(-3) (1 mTorr) of Br2. The absorption cross-sections are increasing with increasing excitation energy in the wavelength region 510-535 nm.  相似文献   

10.
Low lying electronic states of the beryllium dimer were investigated by laser induced fluorescence (LIF) and resonance enhanced multiphoton ionization (REMPI) techniques. Be(2) was formed by pulsed laser ablation of Be metal in the presence of helium carrier gas, followed by a free jet expansion into vacuum. Several previously unobserved states of the dimer were characterized. These included transitions of the triplet manifold (2)(3)Pi(g) <-- (1)(3)Sigma(u)+ and (3)(3)Pi(g) <-- (1)(3)Sigma(u)+, for which rotationally resolved bands were obtained. In addition, transitions to the v' = 10-18 vibrational levels of the A (1)Pi(u) state were recorded. Photoionization efficiency (PIE) measurements were used to determine an accurate ionization energy (IE) for Be(2) of 7.418(5) eV and the term energy for (1)(3)Sigma(u)+. Above the ionization threshold the PIE spectrum was found to be highly structured, consisting of overlapping Rydberg series that converged on excited vibrational levels of Be(2)+. Analysis of these series yielded a vibration frequency for the X(2)Sigma(u)+ state of 498(20) cm(-1). The bond dissociation energy for Be(2)+, deduced from the IE measurement, was 16 072(40) cm(-1). Multi-reference configuration interaction (MRCI) calculations were carried out for Be(2) and Be(2)+, yielding results that were in excellent agreement with the experimental observations.  相似文献   

11.
An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).  相似文献   

12.
Femtosecond degenerate four-wave-mixing spectroscopy following an initial pump laser pulse was used to observe the wave packet dynamics in excited electronic states of gas phase iodine. The focus of the investigation was on the ion pair states belonging to the first tier dissociating into the two ions I-(1S) + I+(3P2). By a proper choice of the wavelengths of the initial pump and degenerate four-wave-mixing pulses, we were able to observe the vibrational dynamics of the B (3)Pi(u) (+) state of molecular iodine as well as the ion pair states accessible from there by a one-photon transition. The method proves to be a valuable tool for exploring higher lying states that cannot be directly accessed from the ground state due to selection rule exclusion or unfavorable Franck-Condon overlap.  相似文献   

13.
The GaO and GaO2 molecules were investigated using negative ion photoelectron spectroscopy. All the photoelectron spectra showed vibrationally resolved progressions. With the aid of electronic structure calculations and Franck-Condon spectral simulations, different molecular parameters and energetics of GaO-/GaO and GaO2-/GaO2 were determined, including the electron affinity of GaO, the vibrational frequency of GaO-, and the term energy, spin-orbit splitting, and vibrational frequency for the first excited A 2PiOmega state of GaO. The GaO2- photoelectron spectra comprised three bands assigned as transitions from the linear X 1Sigma(g)+ ground state of GaO2- to three linear neutral states: the A 2Pi(g), B 2Pi(u), and C 2Sigma(u) + states. The symmetric stretch frequencies of the anion and three neutral states as well as the spin-orbit splitting of the neutral 2Pi states were determined. Electronic structure calculations found the neutral lowest energy linear structure to be only 63 meV higher than the neutral bent geometry.  相似文献   

14.
Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I-(1S)+I(2P3/2)+I(2P3/2) with the yield of approximately 30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the 3Piu(0u+)<--1Sigmag+(0g+) excitation proceeds as I-(1S)+I2(X 1Sigmag+)/I2(A 3Pi1u) or I(2P3/2)+I2-(X 2Sigmau+) with the yield of approximately 60%, while that via the 1Sigmau+(0u+)<--1Sigmag+(0g+) excitation alternatively as I*(2P1/2)+I2-(X 2Sigmau+) or I-(1S)+I2(B 3Piu) with the yield of approximately 60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.  相似文献   

15.
Triatomic BNB has been produced by laser ablation of a boron nitride rod in a supersonic expansion of helium carrier gas and has been investigated using resonant two-photon ionization spectroscopy in the visible region. The B 2Pi(g)-X 2Sigma(u)+ band system has been recorded near 514 nm and is dominated by a strong origin band, which has been rotationally resolved and analyzed. Both the (11)B(14)N(11)B (64% natural abundance) and the (10)B(14)N(11)B (32% natural abundance) isotopic modifications have been analyzed, leading to the spectroscopic constants (and their 1sigma error limits) of B0"(X 2Sigma(u)+)=0.466 147(70), B0'(B 2Pi(g))=0.467 255(75), and A0'(B 2Pi(g))=6.1563(38) cm(-1) for (10)B(14)N(11)B, corresponding to r(B-N)"(X 2Sigma(u)+)=1.312 47(10) A and r(B-N)'(B 2Pi(g))=1.310 92(11) A. Very similar values are obtained for the more abundant isotopomer, (11)B(14)N(11)B: B0"(X 2Sigma(u)+)=0.444 493(69), B0'(B 2Pi(g))=0.445 606(70), A0'(B 2Pi(g))=6.1455(38) cm(-1), corresponding to r(B-N)"(X 2Sigma(u)+)=1.312 41(10) A and r(B-N)'(B 2Pi(g))=1.310 77(10) A. These results are discussed as they relate to Walsh's rules and are compared to results for related molecules.  相似文献   

16.
The 39K2 2 3Pi(g) state has been observed by perturbation facilitated infrared-infrared double resonance and two-photon excitations. The vibrational numbering of the 2 3Pi(g) levels was determined by resolved fluorescence into the bound levels as well as to the continuum of the a 3Sigma(u)+ state. The rotational assignment of the 2 3Pi(g) levels excited by two-photon transitions was determined from excitation frequencies and resolved fluorescence into the bound levels of the a 3Sigma(u) + and b 3Pi(u) states. Molecular constants obtained from these observed levels agree with theoretical constants.  相似文献   

17.
Dissociative direct photoionization of the N2O(X 1Sigma+) linear molecule via the N2O+(B 2Pi) ionic state induced by linearly polarized synchrotron radiation P in the 18-22 eV photon energy range is investigated using the (VA+,Ve,P) vector correlation method, where VA+ is the nascent velocity vector of the NO+, N2+, or O+ ionic fragment and Ve that of the photoelectron. The DPI processes are identified by the ion-electron kinetic energy correlation, and the IchiA+(thetae,phie) molecular frame photoelectron angular distributions (MFPADs) are reported for the dominant reaction leading to NO+ (X 1Sigma+,v) + N(2D)+ e. The measured MFPADs are found in satisfactory agreement with the reported multichannel Schwinger configuration interaction calculations, when bending of the N2O+(B 2Pi) molecular ion prior to dissociation is taken into account. A significant evolution of the electron scattering anisotropies is observed, in particular in the azimuthal dependence of the MFPADs, characteristic of a photoionization transition between a neutral state of Sigma symmetry and an ionic state of Pi symmetry. This interpretation is supported by a simple model describing the photoionization transition by the coherent superposition of two ssigma and ddelta partial waves and the associated Coulomb phases.  相似文献   

18.
19.
We have investigated the Rb2 475 nm system by resonance enhanced two-photon ionization spectroscopy in a pulsed molecular beam. Strong extra bands accompanying the 2 (1)Pi(u) v' = 5 - 8 <-- X (1)Sigma(g)(+) v' = 0 bands were newly observed. Rotational analysis of the main and extra bands reveals that the 2 (1)Pi(u) v' = 5 - 8 levels are significantly perturbed, mainly by the 3 (3)Sigma(u)(+)(1 u) state and also by the 2 (3)Pi(u)(1 u) state. For the major perturber, 3 (3)Sigma(u)(+)(1 u), the intensity borrowing has been found to be facilitated by the 2 (1)Pi(u)-3 (3)Sigma(u)(+)(1 u) potential energy curve crossing near 21,100 cm(-1). For the vibronic-band intensities of the 2 (3)Pi(u)(1 u) v' <-- X (1)Sigma(g)(+) v' = 0 transitions observed in this spectral region, intensity borrowing was most effective when the 2 (3)Pi(u)(1 u) levels were close to the 3 (3)Sigma(u)(+)(1 u) levels. A deperturbation fit for the perturbing bands has provided the 2 (1)Pi(u)-3 (3)Sigma(u)(+)(1 u) coupling constants.  相似文献   

20.
Time-dependent Schr?dinger equation, TDSE, simulations have been performed in order to prepare and study via MPIPS the evolution of vibrational wave packets on the ion pair electronic state potentials B'B1Sigma(u)(+) and Hh1Sigma(g)(+) of the H2 molecule. Using ab initio potential surfaces and transition moments, we present two- and three-photon excitation schemes with ultrashort pulses (tau 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号