首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we introduce the concept of multifrequency radiation force produced by a polychromatic acoustic beam propagating in a fluid. This force is a generalization of dynamic radiation force due to a bichromatic wave. We analyse the force exerted on a rigid sphere by a plane wave with N frequency components. Our approach is based on solving the related scattering problem, taking into account the nonlinearity of the fluid. The radiation force is calculated by integrating the excess of pressure in the quasilinear approximation over the surface of the sphere. Results reveal that the spectrum of the multifrequency radiation force is composed of up to N(N−1)/2 distinct frequency components. In addition, the radiation force generated by plane progressive waves is predominantly caused by parametric amplification. This is a phenomenon due to the nonlinear nature of wave propagation in fluids.  相似文献   

2.
Diversity of biomedical applications of acoustic radiation force   总被引:1,自引:0,他引:1  
  相似文献   

3.
On the feasibility of remote palpation using acoustic radiation force   总被引:7,自引:0,他引:7  
A method of acoustic remote palpation, capable of imaging local variations in the mechanical properties of tissue, is under investigation. In this method, focused ultrasound is used to apply localized (on the order of 2 mm3) radiation force within tissue. and the resulting tissue displacements are mapped using ultrasonic correlation based methods. The tissue displacements are inversely proportional to the stiffness of the tissue, and thus a stiffer region of tissue exhibits smaller displacements than a more compliant region. In this paper, the feasibility of remote palpation is demonstrated experimentally using breast tissue phantoms with spherical lesion inclusions, and in vitro liver samples. A single diagnostic transducer and modified ultrasonic imaging system are used to perform remote palpation. The displacement images are directly correlated to local variations in tissue stiffness with higher contrast than the corresponding B-mode images. Relationships between acoustic beam parameters, lesion characteristics and radiation force induced tissue displacement patterns are investigated and discussed. The results show promise for the clinical implementation of remote palpation.  相似文献   

4.
We report on parametric amplification in dynamic radiation force produced by a bichromatic acoustic beam in a fluid. To explain this effect we develop a theory taking into account the nonlinearity of the fluid. The theory is validated through an experiment to measure the dynamic radiation force on an acrylic sphere. Results exhibit an amplification of 66 dB in water and 80 dB in alcohol as the difference of the frequencies is increased from 10 Hz to 240 kHz.  相似文献   

5.
从粒子在行波场中的声散射出发,研究当声场中存在稀疏分布的多个粒子时粒子受到的声辐射力,并且给出了适用于声场中任意位置的粒子声辐射力计算公式。由于声辐射力为非线性力,当声场中存在多个粒子时,直接计算粒子受到的声辐射力非常复杂。结果表明,当声场中存在多个稀疏分布的粒子时,这一多粒子系统可以视为多个单独的双粒子系统的叠加,只需要分别计算各个双粒子系统的声辐射力就可以通过叠加得到声场中任意粒子的声辐射力。这一结果有助于利用声辐射力对微小粒子进行精细操控。  相似文献   

6.
Mitri FG 《Ultrasonics》2005,43(4):271-277
The frequency dependence of the radiation force function Y(p) for absorbing cylindrical shells suspended in an inviscid fluid in a plane incident sound field is analysed, in relation to the thickness and the content of their interior hollow region. The theory is modified to include the effect of hysteresis type absorption of compressional and shear waves in the material. The results of numerical calculations are presented for two viscoelastic (lucite and phenolic polymer) materials, with the hollow region filled with water or air indicating how damping and change of the interior fluid inside the shell's hollow region affect the acoustic radiation force. The acoustic radiation force acting on cylindrical lucite shells immersed in a high density fluid (in this case mercury) and filled with water in their hollow region, is also studied.  相似文献   

7.
针对一定声场作用下自由空间中的球形粒子,首先分析了声散射过程中的吸收声功率、散射声功率和损失声功率以及三者之间的关系,并通过计算发现了由于参数选取不当导致的负吸收现象。接着从动量守恒定律出发推导了声辐射力的一般表达式,阐释了声辐射力与声能流之间的关系,并从理论和计算两方面验证了负向声辐射力的存在。当负向声辐射力产生时,声波的背向散射被抑制。在此基础上,进一步研究了粒子的偏心特性和流体的黏度这两种常见因素对负向声辐射力的影响。利用球函数的加法公式推导了偏心球的散射系数和声辐射力公式,结果显示偏心距离、粒子的材料等都会显著改变负向声辐射力的产生条件。在低频近似下,由于流体黏度附加的正向声辐射力是否能完全抵消原来的负向声辐射力将决定最终的声辐射力方向。该结果对利用负向声辐射力制成单行波声学镊子来实现对特定粒子的操控有着理论指导意义。  相似文献   

8.
Tissue elasticity estimation is a growing area of ultrasound research. One proposed approach would apply acoustic radiation force to displace tissue and use ultrasonic motion tracking techniques to measure the resultant displacement. Such a technique might allow noninvasive imaging of tissue elastic properties. The potential of this method will be limited by the magnitude of displacements which can be generated at reasonable acoustic intensity levels. This paper presents methods for estimating the internal displacements induced in an elastic solid by acoustic radiation force. These methods predict displacements on the order of 400 microns in the human vitreous body, 0.008 micron in human breast, and 0.020 micron in human liver at an acoustic intensity of 1.0 W/cm2 (in water) and an operating frequency of 10 MHz. While the displacement generated in the vitreous should be readily detectable using ultrasonic methods, the displacements generated in the breast and liver will be much more difficult to detect. Methods are also developed for predicting the time dependent temperature increases associated with attenuated acoustic fields in the absence of perfusion. These results indicate promise for radiation force imaging in the vitreous, but potential difficulties in applying these techniques in other parts of the body.  相似文献   

9.
针对水下椭球粒子,以声散射理论为基础,采用分波序列的方法,建立了椭球粒子声辐射力的理论计算模型。进而根据声辐射力计算公式,以刚性椭球粒子和液体椭球粒子为例,计算并分析不同Bessel波束作用下椭球粒子的轴向声辐射力函数特征。数值仿真计算结果表明,对于刚性椭球粒子,扁平椭球粒子相对于细长椭球粒子更有助于激发负声辐射力;对于液体椭球粒子,细长椭球粒子相对于扁平椭球粒子更加容易产生负声辐射力;对于不同介质的椭球粒子,不同的入射波束激发的负声辐射力的效果也存在明显的差异。该结果为复杂的尺寸和介质粒子声操控技术提供了理论的可行性。  相似文献   

10.
F.G. Mitri 《Ultrasonics》2010,50(6):620-627

Objective

The present research examines the acoustic radiation force of axisymmetric waves incident upon a cylinder of circular surface immersed in a nonviscous fluid. The attempt here is to unify the various treatments of radiation force on a cylinder with arbitrary radius and provide a formulation suitable for any axisymmetric incident wave.

Method and results

Analytical equations are derived for the acoustic scattering field and the axial acoustic radiation force. A general formulation for the radiation force function, which is the radiation force per unit energy density per unit cross-sectional surface, is derived. Specialized forms of the radiation force function are provided for several types of incident waves including plane progressive, plane standing, plane quasi-standing, cylindrical progressive diverging, cylindrical progressive converging and cylindrical standing and quasi-standing diverging waves (with an extension to the case of spherical standing and quasi-standing diverging waves incident upon a sphere).

Significance and some potential applications

This study may be helpful essentially due to its inherent value as a canonical problem in physical acoustics. Potential applications include particle manipulation of cylindrical shaped structures in biomedicine, micro-gravity environments, fluid dynamics properties of cylindrical capillary bridges, and the micro-fabrication of new cylindrical crystals to better control light beams.  相似文献   

11.
The motion of spherical microparticles with sizes (50–250 μm) less than or comparable to the wavelength of ultrasound (300 μm) in a gel-like medium is studied. Particle displacement is defined by the acoustic radiation force and the motion of the medium. It is shown that a specific feature of microparticle motion is their complete deceleration for a time of about 1 ms after switching off the ultrasound, and their subsequent displacement is determined entirely by the medium’s relaxation. The aim of the work is to develop ultrasonic means of detecting microcalcifications in breast tissues.  相似文献   

12.
A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.  相似文献   

13.
The assessment of viscoelastic properties of soft tissues is enjoying a growing interest in the field of medical imaging as pathologies are often correlated with a local change of stiffness. To date, advanced techniques in that field have been concentrating on the estimation of the second order elastic modulus (mu). In this paper, the nonlinear behavior of quasi-incompressible soft solids is investigated using the supersonic shear imaging technique based on the remote generation of polarized plane shear waves in tissues induced by the acoustic radiation force. Applying a theoretical approach of the strain energy in soft solid [Hamilton et al., J. Acoust. Soc. Am. 116, 41-44 (2004)], it is shown that the well-known acoustoelasticity experiment allowing the recovery of higher order elastic moduli can be greatly simplified. Experimentally, it requires measurements of the local speed of polarized plane shear waves in a statically and uniaxially stressed isotropic medium. These shear wave speed estimates are obtained by imaging the shear wave propagation in soft media with an ultrafast echographic scanner. In this situation, the uniaxial static stress induces anisotropy due to the nonlinear effects and results in a change of shear wave speed. Then the third order elastic modulus (A) is measured in agar-gelatin-based phantoms and polyvinyl alcohol based phantoms.  相似文献   

14.
Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have...  相似文献   

15.
Mitri FG  Fatemi M 《Ultrasonics》2005,43(6):435-445
An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.  相似文献   

16.
In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces.  相似文献   

17.
Mitri FG  Fellah ZE 《Ultrasonics》2006,44(3):287-296
The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a hysteresis type of absorption inside the shells' material. The results of numerical calculations are presented for stainless steel and absorbing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the static radiation force function Yp when the modulation size parameter deltax = mid R:x2 - x1mid R: (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.  相似文献   

18.
Ultrasonic standing waves can be used to generate radiation forces on particles within a fluid. A number of authors have derived detailed representations of these forces but these are most commonly applied using an approximation to the energy distribution based upon an idealized standing wave within a mode based upon rigid boundaries. An electro-acoustic model of the acoustic energy distribution within a standing wave with arbitrary thickness boundaries has been expanded to model the radiation force on an example particle within the acoustic field. This is used to examine the force profile on a particle at resonances other than those predicted with rigid boundaries, and with pressure nodes at different positions. A simple analytical method for predicting modal conditions for combinations of frequencies and layer thickness characteristics is presented, which predicts that resonances can exist that will produce a pressure node at arbitrary positions in the fluid layer of such a system. This can be used to design resonators that will drive particles to positions other than the center of the fluid layer, including the fluid/solid boundary of the layer, with significant potential applications in sensing systems. Further, the model also predicts conditions for multiple subwavelength resonances within the fluid layer of a single resonator, each resonance having different nodal planes for particle concentration.  相似文献   

19.
Mitri FG 《Ultrasonics》2006,44(3):244-258
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.  相似文献   

20.
赵章风  张文俊  牛丽丽  孟龙  郑海荣 《物理学报》2018,67(19):194302-194302
微流体在生物医学、化学工程等领域应用广泛,并具有重大意义.在预处理中,液体混合也是关键且最为必要的前序.为了提高微流控腔道内液体混合的效率,本文提出基于单微泡振动的声学混合器,通过微泡共振,产生声微流,声微流形成的剪切力将在流体中产生微扰动,实现液体的混合.设计了底面直径为40μm的微孔结构,由于液体表面张力作用形成微泡,在共振频率为165 kHz的压电换能器激励下,气泡发生共振产生声微流.通过对压电换能器输入不同能量,获取混合液体的最优参数,可在37.5 ms内实现混合效果,混合均匀度达到92.7%.本文设计的单微泡振动混合器结构简单、混合效率高、混合时间短、输入能量低,可为生物化学等方面的研究提供强有力的技术支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号